MAKRO-MOLLUSCA BOKOKOTORSKOG ZALIVA

MACRO-MOLLUSCA OF BOKA KOTORSKA BAY

Jovan Stjepěević Zavod za biologiju mora - Kotor

I UVOD

Poznato je da Bokokotorski zaliv zauzima specifičan položaj u Jadranskom moru. Ta specifiénost uslovljena je ne samo geografskim položajem, već i posebnim biotskim i abiotskim faktorima sredine. To uslovljava da se uslovi života u mnogome razlikuju od uslova u otvorenom dijelu Jadrana, No, i pored svega toga, do sada su vrlo malo vršena biološka istraživanja, tako da nam je Bokokotorski zaliv u pogledu njegove faune i flore ostao još i dalje nedovoljno poznat.
A. Ercegović (1938.) obraduje hidrografiju Bokokotorskog zaliva na osnovu jednokratnih proba wzetih u novembru 1937. godine i uporedo daje pregled fitoplanktona u Zalivu; T. Gamulin vršio je istraživanja planktonskih kopepoda i 1938. godine objavljuje ta istraživanja; G. Kolosvary iste godine daje pregled ehinodermata u Bokokotorskom zalivu; D. Zloković (1939.) daje podatke o hidrografskim prilikama vrela (izvora) u Risanskom zalivu; J. Linardić (1940.) daje podatke o nalazistima Fucus virsoides (DON.) u Hercegnovskom i Tivatskom zalivu; F. Pax i I. Müller (1962.) daju podatke o nalazištima Veretillum (PAL.) u Kotorskom zalivu (14); J. Stjepčevié i V. Zunjić (1964.) daju pregled fiziografskih osobina Bokokotorskog zaliva; V. Lepetic (1956.) daje pregled sastava i sezonske dinamike ihtiobentosa i jestivih avertebrata u Bokokotorskom zalivu i moguénosti njihove eksploatacije; G. Karaman i H. Gamulin-Brida
(1956.) daju podatke o kvalitativno-kvantitativnom sastavu bentoskih biocenoza Bokokotorskog zaliva (rad je u rukopisu i nije još publikovan); D. Vukanić (1967.) daje pregled planktonskih kopepoda Bokokotorskog zaliva (rad je u rukopisu i nije joś objavljen) i L. Rijavec (1967.) daje pregled sastava i dinamike populacije Pagellus erythrinus (L.) u Bokokotorskom zalivu s osvrtom na druga područja Jadranskom mora (doktorska disertacija).

Međutim, Mollusca Bokokotorskog zaliva, kako mikro tako i makro--Mollusca (osim što su neki obuhvaćeni radom G. Karaman i H. Gamulin--Brida - 1956.), do danas niko nije prouẽavao. Stoga smo svoja proučavanja, koja su trajala pune 4 godine, usmjerili u praveu pronalaženja vrsta makro-Mollusca i njihovih staništa u Bokokotorskom zalivu, kao i proučavanju rasprostranjenosti. U ovom radu su iznijeti neki rezultati o makro--moluscima, dok će naredni rad obuhvatati mikro-Mollusca.

Posebnu zahvalnost dugujem univ, prof. dr Pietrú Parenzan, direktoru Stazione di Biologia del Salento u Porto Cesareo, koji mi je omoguéio plodan tromjesečan rad u navedenoj instituciji, stavio na raspolaganje i korişcenje svoju liẽnu bogatu literaturu o moluscima, razne separate, rukopise, svoje radove, kao i bogatu zbirku mediteranskih Mollusca; liěno je učestvovao u postavljanju programa mojih istraživanja u Jonskom moru, pratio izvršenje i obradu ovog rada, te svojim bogatim iskustvom I poznavanjem problematike umnogome doprinio da ovaj rad privedem kraju. U tom smislu, a posebno u znak zahvalnosti i dubokog pos̉tovanja, kao i našeg zajedničkog rada na istraživanju Mollusca Jonskog mora, ovaj kraći rad o makro-moluscima Bokokotorskog zaliva posvećujem mojem velikom prijatelju univ. prof, dr Pietru Parenzan.

Posebno se zahvaljujem univ. prof. dr Tonku Soljanu, direktoru Biološkog instituta u Sarajevu, koji je direktno učestvovao u postavljanju programa ovog rada, te svojim velikim iskustvom i poznavanjem ove materije doprinio njegovoj realizacijt.

Koristim ovu priliku da se zahvalim dr G. Karamanu i univ. prof. dr Gamulin-Bridi na ustupljenom materijalu i rukopisu.

Takode se zahvaljujem prof. dr P. Dorhn, direktoru Stazione Zoologica di Napoli na uručenom pozivu za rad u Institutu i koriścenju literature u institutskoj biblioteci.

II SVRHA ISTRAŽIVANJA I ZADACI

Iz samog uvođ̃a se đâ zakljuciti da je osnovni cilj ovog istraživanja da se dâ faunistički pregled makro-Mollusca Bokokotorskog zaliva, njihovih nalazišta i rasprostranjenosti.

Pošto je Bokokotorski zaliv do sada bio nedovoljno istražen, to je, pored faunističkog pregleda makro-Mollusca, ovim radom obuhvacen i niz pratecih istraživanja I mjerenja. Ovim istraživanjima postavljeni su sljedeći zadaci:

- kvalitativna registracija svih nađenih makro-Mollusca i, po moguénosti, registrovanje njihove rasprostranjenosti u Bokokotorskom zalivu;
- radi eventualnog dovodenja u vezu pojedinih abiotskih i biotskih faktora sredine sa uslovima kvalitativne i kvantitativne distribucije mak-ro-Mollusca izvršena su sljedeća mjerenja:
a) analiza osnovnih hidrografskih podataka - temperature i saliniteta - na pozicijama gdje su vršena istraživanja, i to sezonski kroz jednogodišnji ciklus;
b) prozirnost mora pomoću Secchi-jeve ploče.

III MATERLJAL I METODIKA RADA

Pronalaz̃enje i prikupljanje makro-Mollusca vršili smo (sa malim prekidima) pune četiri godine (maj 1961. - avgust 1965.). U ovom periodu posebno se mogu istaći dva intervala, i to: prvi, od maja 1961. do jula 1962. i, drugi, od maja 1963. do maja 1964. godine. U ta dva dvogodišnja perioda u cilju planskog istraživanja i pronalaženja makro-Mollusca odabrali smo 86, odnosno 63 pozicije ravnomjerno rasprostranjene po čitavom Bokokotorskom zalivu (pozicije P) na kojima su se četiri puta godišnje vršila istraživanja. U drugom intenzivnom periodu (V-VI 1963., IX-X 1963., I 1964., III-IV 1964. god.) pored istrazivanja s ciljem pronalaženja makro--Mollusca uzimani su podaci o dubini mora, temperaturi morske vode na površini, sredini i morskom dnu, uzorci morske vode sa povrsine, sredine i dna radi određivanja saliniteta.

Prorijedeni fond Mollusca, posebno u obalnoj zoni Bokokotorskog zaliva u mnogome je otežavao rad. C̄esto je bilo potrebno da se duže vremena zadržimo na jednoj poziciji kako bi se pronašla odredena vrsta za koju se moglo pretpostaviti da je tu nastanjena. Postoje vişestruki razlozi prorijeđenom, odnosno oslabljenom fondu Mollusca u Zalivu. Posljednjih godina je primijeceno jako odumiranje pojedinih vrsta Mollusca a posebno Bivalvia. Sa sigurnošću se može pretpostaviti da je tome uzrok veliki priliv nafte i njenih derivata u more, kao i drugth raznih otrovnih hemijskih jedinjenja iz raznih skladista, pojedinih fabrika, ratnih brodova i sI. Dalje, u Zaliv se svake godine sve više sliya veća količina otpadnih voda iz gradskih kanalizacija, a takođe se nalazi i velika kolicina starog željeza. Ove pojave su opasnije, tim prije što je strujanje vode u Zalivu dosta slabo.

Pored navedenih postoje i drugi razlozi kao: razvijena domaća radinost koja u posljednje vrijeme sve vise koristi ljusture puževa i škoIjaka, kao i sve vedi interes srednjoskolske i druge omladine za prikupljanje ovih organizama.

Za prikupljanje i hvatanje makro-Mollusca - osim ronjenja - upotrebljavali smo Petersen-ovo grabilo, koje je zahvatalo $1 / 5 \mathrm{~m}^{\prime}$ povrsine, dredu i povlačnu mrez̄u-koču.

Sadržaj izvaden sa dna pomoéu Petersen-ovog grabila îspirali smo kroz sistem sita od kojith je najgušce imalo okca veličine $1 \mathrm{~mm}^{2}$. Buduel da se ronjenjem i grabilom ne može dobiti potpuna slika, posebno bentoskih Mollusca, to smo u swim djelovima Bokokotorskog zaliva (1K-9K), gdje je bilo moguće zbog konfiguracije morskog dna, upotrijebili povlačnu mrežu-koču (pozicije K). Na istim pozicijama radi boljeg sagledavanja i hvatanja bentoskih Mollusea i njihovog ssto potpunijeg kvalitativnog registrovanja, upotrijebili smo i dredu.

Uzorei morske vode za odredivanje saliniteta uzimani su na 63 pozieije Nansen-ovim crpcem, a temperatura je mjerena pomoću obrtljivog termometra. Obrađivanje saliniteta morske vode vríli smo po Mohr--Knudsen-ovoj metodi.

IV KARAKTERISTIKE BOKOKOTORSKOG ZALIVA

Opšte odljke. - Bokokotorski zaliv c̈ini najrazudenijl dio jugoistočnog dijela Dinarskog primorja. Njegov geografski položaj određen je krajnjim tackama, it to prema sjeveru $42^{\circ} 31^{\circ} 00^{\prime \prime}$, prema jugu $42^{\prime \prime} 23^{\prime} 32^{\prime \prime}$, prema istoku $18^{\prime} 46^{\prime} 122^{\prime \prime}$ i prema zupadu $18^{\prime \prime} 30^{\prime} 29^{\prime \prime}$. On je sastavljen iz cetiri manja zaliva koji se medusobno nadovezuju (Hercegnovski, Tivatski, Risanski i Kotorski) i dva prodora, od kojih prvi povezuje otvoreno more sa Hercegnovskim zalivom, a drugi (Verige) Tivatski sa Kotorskim i Risanskim zalivom. Spoljašnji dio Bokokotorskog zaliva (Hercegnovsko-Tivatski) nastavlja se prema sjeverozapadu u sutorinsku udolinu, a prema fugoistoku u grbaljsku udolinu. Unutras̆nji dio Bokokotorskog zaliva (Ri-sansko-Kotorski) nastavlja se prema zapadu u morinjsku, a prema jugu u kotorsku udolinu. I spoljašnji i mnutrašnji dio Bokokotorskog zaliva imaju dinarski pravac pružanja.

Povrsina akvatorije iznosi $87.334 \mathrm{~km}^{2}$ i čini $0,06^{\%} / 0$ Jadranskog mora. Površina akvatorije spoljašnjeg dijela Zaliva iznosi $63,067 \mathrm{~km}^{2}$, to jest za oko 2,59 puta vcća je od povrsine unutrašnjeg dijela Zaliva koja iznosí $24,267 \mathrm{~km}^{2}$. Ukupna zapremina Bokokotorskog zaliva iznosi (izmjereno prema karti razmjera $1: 40000$ kojom raspolaže Ratna mornarica) 2.412,306.000 m^{*} vode. Od toga otpada $18,2 \%$ na Kotorski, $8,5 \%$ Risanski, $36,4^{4} \%$ Tivatski i $36,99 / 0$ na Hercegnovski zaliv. Maksimalna dubina iznosi 61 m , a srednjo u Bokokotorskom zalivivu iznosi $27,6 \mathrm{~m}$. Razuđenost Zaliva
sit ogloda u velikoj dusini obalske linije koja iznosi $105,7 \mathrm{~km}$. Od toga otpada na Kotorski $25,0 \mathrm{~km}$, Risanski $12,6 \mathrm{~km}$, Tivatski $36,1 \mathrm{~km}$ i Hercegnovski $32,0 \mathrm{~km}$ (J, Stjepc̄evié, V. Zunjié: Godišnjak Geografskog drustva SBCG, itr. 75 i 76, 1964.).
B. 2. Milojevjé (Zbornik SAN-Geografski institut, knj. 5, str. 16, 17) je u smislu Rihtofen-ove klasifikacije izdvojio dva tipa obale - uzdužni (razvijen u zalivima) i poprečni (u prodorima). Potoci koji dolaze iz flišnih udolina staložili su na ušéima plavine (u spoljašnjem dijelu Zaliva), a ydje su flisne zone razorene na obalama, rtovi su predstavljeni kreénjačkim plazinama i plavinama (sjeverna i istocena strana Kotorskog zaliva). Rječice koje teku flišnim udolinama dinarskog pravca obrazovale su na uš́ćma aluvijalne ravni (SZ i JI strana spoljašnjeg dijela Zaliva). Tako, na primjer, nanosima Sutorine dno je postalo pliće, te je od uš́a Sutorine izobata od 5 m udaljena 750 m , a izobata od 10 m oko 1250 m .

Horizontalna razudenost Bokokotorskog zaliva iznosi (po Murajevskom) 3,62 , a za pojedine zalive: Kotorski 2,61, Risanski 2,76, Tivatski 3,55 i Hercegnovski 3,63 .

U Bokokotorskom zalivu ima 6 manjih ostrva (4 u spoljašnjem i $2 u$ unutrašnjem dijelu Zaliva).

Karakteristike reljefaimehanički sastav morskog dna. - Bokokotorski zaliv je u pogledu reljefa veoma složen. Dà se odmeh zaključiti da u reljefu morskog dna B. zaliva možemo razlikovati dvije stepenice: žal i kontinentsku površinu ili shelf, dok ostale stepenice (kontinentski pad, duboko i abisalno dno) ne postoji zbog ma\log prostora 1 ograničene dubine. S obzirom na strukturu i vertikalno pružanje obalnog dijela, može se reći da u čitavom Kotorskom (izuzev manjih djelova na istočnoj i sjevernoj strani), Risanskom, Tivatskom (izuzev jednog dijela na istočnoj strani) i Hercegnovskom (izuzev nekih djelova sjevernog dijela ovog zaliva) dijelu zaliva nema ni žala, vé se od same povrsìne mora spuštaju kameniti obronci strmih strana, tako da u tim djelovima samo ima strmu kontinentsku površinu koja se prostire do samog dna Zaliva,

Reljef dna Zaliva je veoma složen. U svakom zalivu pojedinačno dubina se povećava prema sredini, mada u Kotorskom maksimalna nije u sredini zaliva veé u blizini Dražin-rta, gdje iznosi 52 m . U Kotorskom zalivu uočava se depresija dublja od 40 m ., a i u Hercegnovskom i Tivatskom druga, takode dublja od 40 m .

Poprečni profili prodora Kobile i Veriga predstavljaju vrlo uske doline strmih strana asimetričnog oblika. Posebno uzdužni profil kroz Verige dobijen ehosonderom pokazuje neravno dno i nema ravnomjeran pad prema jugozapadu, kao što bi trebalo da bude kod svih rijeěnih dolina. Na uzdužnom profilu dubine bivaju čas veće, čas manje. Ovo bí
mogla da bude jedna od činjenica koja ne ide u prilog teoriji da je ovaj prodor riječna probojnica.

Samo dno Zaliva uglavnom je prekriveno debelim naslagama finog mulja. Prema V. Lepetiéu (Studia Marina, str. 22, 1965.) u Kotorskom i Risanskom zalivu, kao i u prodoru Veriga uglavnom je zastupljena glina, dok je neposredno ispred Risna zastupljena pjeskovita glina. U Tivatskom, takode, preovlađuje glina, a u manjoj mjeri su zastupljeni glinasto--ilovasti pijesak i glinasta ilovača. U Hercegnovskom zalivu, pored gline, dno je prekriveno glinastom ilovačom, glinastim pijeskom i pijeskom.

Slika br. 1 (po V. Lepetiću, Studia Marina 1 str. 22, 1965.)
Prema G. Karamanu i H. Gamulin-Bridi (Kvalitativno-kvantitativni sastav bentoskih biocenoza u B. zalivu, str. 3, 1965.) scentralne djelove čitavog Bokokotorskog zaliva pokriva fini terigeni mulj sa više ili manje detritičnih elemenata κ.

Proučavanjem uzoraka iz sastava dna Bokokotorskog zaliva zaključili smo, takode, da su oni terigeni po načinu postanka, i to litoralni i šelfski, a minerogeni s obzirom na porijeklo.

U priobalnom pojasu Kotorskog, Tivatskog i Hercegnovskog zaliva nalaze se pjeskovito-muljevita područja obrasla morskim evjetnicama. Uz istočnu obalu Kotorskog zaliva dobro su razvijene livade Zostere, dok su $u z$ istočnu obalu Tivatskog zaliva i sjeveroistočnu obalu (Igalo i zaliv Zanjice) Hercegnovskog zaliva dobro razvijene livade Cymodocea nodosa (UGRIA), Posidonia oceanica (L.) i Zostera marina (L.)

Hidrografske odlike. - Na osnovu izvršenih mjerenja konstatovano je da sa nastupanjem prvih jesenjih dana i prvih bura nastaju znatne promjene u temperaturi vode. Zapaža se da je temperatura površinskih znatno niža od temperature dubljih slojeva (tabela br. 2). Isto tako zapaža se da se na raznim mjestima u površinskim slojevima temperatura znatno koleba i brzo mijenja, što uglavnom zavisi od temperature vazduha i padavina. Ova temperaturna kolebanja karakteristična su znatno vise za unutrašnji dio Zaliva nego za spoljašnji i ona su narocito izrazita u periodu od X do V mjeseca.

Ta temperaturna kolebanja mogu se pratiti tokom čitave godine i baš zato se ne mogu utvrditi neke ustaljene temperature u Zalivu u površinskim i nižim slojevima ($0-15 \mathrm{~m}$) vode, niti pak kao takve dati.

Takođe se dâ zaključiti da temperatura ne samo površinskih i nižih već i dublijih slojeva vode raste od Kotorskog i Risanskog prema Tivatskom i Hercegnovskom zalivu i dalje prema otvorenom moru. Ta pojava se može okarakterisati kao jedna zakonitost uslovljena raznim spoljašnjim faktorima, prvenstveno prilivom slatke vode s kopna.

Isto tako ova se pojava može pratiti i kod srednje temperaturne vrijednosti vode pojedinih zaliva (tabela br. 6).

Prema dubini temperatura na svim mjestima raste od X do V mjeseca. Već na dubini od 15 metara gotovo na svim mjestima u cijelom Bokokotorskom zalivu u IX-X mjesecu kreće se oko $22,63^{\circ} \mathrm{C}$, u pryoj polovini januara (na istoj dubini) oko $14,78^{\circ} \mathrm{C}$, a u martu oko $14,11^{\circ} \mathrm{C}$.

I u slojevima ispod 15 m porast je isto tako interesantan. Tako se temperatura u sloju od 30 m dubine na svim mjestima kreće u IX i X mjesecu između $18,02^{\circ} \mathrm{C}$ u Kotorskom do $22,65^{\circ} \mathrm{C}$ u Hercegnovskom; maksimalna razlika je $4,63^{\circ} \mathrm{C}$, dok temperaturni gradijent u svim slojevima od 15 do 30 m dubine, u istom vremenu, iznosi $4,64^{\circ} \mathrm{C} u$ Kotorskom do $0,06^{e}$ u Hercegnovskom zalivu.

Slične temperaturne oscilacije mogu se pratiti i u ostalim periodama mjerenja (tabele $1,3,4,5$).

Izvršena mjerenja pokazuju（tabele 1－6）da se u vremenu od X do V mjeseca razlikuju dva temperaturna sloja：voda niže temperature koja je u površinskim slojevima i voda s visim temperaturama u dubljim slo－ jevima，Granica ovih dvaju slojeva je od 0 do 20 m ．

Isto tako u periodu VI do IX mjeseca razlikuju se dva temperaturna sloja：voda više temperature koja je u površinskim slojevima i voda s ni－ žim temperaturama u dubljim slojevima．Granica ovih dvaju slojeva je od 0 do 15 m （tabela br．5）．

I u pogledu saliniteta uočena su velika kolebanja skoro na svim proučavanim pozicijama u toku cijele godine（tabele 7－11）．Upadljivo je da salinitet jako opada od otvorenog mora prema Hercegnovskom i Ti－ vatskom zalivu i dalje prema Risanskom i Kotorskom．Ta razlika je na－ ročito velika između Kotorskog i Hercegnovskog gdje maksimalna raz－ lika iznosi povremeno po pojedinim slojevima i do $24,51 \%$（tabela 8），ili $24,93 \%$（Ercegović，1937．）．Međutim，ovako velike oscilacije njjesu stalne， već se vrlo cesto mijenjaju u zavisnosti od priliva slatke vode u more i ponekad su te razlike vrlo male（tabele br，9，11）．No，ipak se uočava tokom citave godine da je salinitet u Kotorskom i Risanskom zalivu uvi－ jek niži u odnosu na Tivatski i Hercegnovski zaliv．Svakako te razlike su uočljivije i veće u površinskim slojevima（granica 0－15 m），dok u dub－ ljim slojevima te razlike su znatno manje，mada se uvijek javljaju．

Sa porastom dubine povećava se i salinitet．U tom pogledu razlike su uoc̈ljivije u unutrašnjem nego u spoljašnjem dijelu B．zaliva．U peri－ odu od X do V mjeseca voda na površini Kotorskog zaliva je 2,5 puta manje slana nego na 15 m dubine，a u Risanskom zalivu ta razlika je jo§ veća－ 3,5 puta．

Providnost vode čitavog Bokokotorskog zaliva，a naročito njegovih uvala，dobrim dijelom godine je vrlo mala．To naročito važi u periodu od X do V mjeseca kada je voda pretežno mutnozelene boje．

Tabela A

Pregled providnostl vode B，zaliva na istrazivanim pozicijama u novembru 1961，godine

Kotorski		Risanski		Tivatski		Hercegnovski	
4，66 m	3，64 m	4.70 m	3，58 m	4，80 mil	3，16 m	5，74 m	$3,96 \mathrm{~m}$

I kod ovog mjerenja zapaža se da se providnost povečava od Kotorskog ka Hercegnovskom zalivu. Ta se pojava još bolje prati u periodu VI-VII, kada je providnost morske vode u Zalivu 3 puta veća nego u novembru 1961. godine.

Tabela B

Pregled prosječne providnosti mora u B. zalivu dobijene u VI i VII mjesecu 1964. god. (Studia Marina 1, str. 33, 1965. po Lepetiću)

$\mathrm{P}-1$	$\mathrm{P}-2$	$\mathrm{P}-3$	$\mathrm{P}-4$	$\mathrm{P}-5$	$\mathrm{P}-6$	$\mathrm{P}-7$	$\mathrm{P}-8$	prosjek
9,2	10,8	12,5	12,0	16,5	17,0	11,0	15,5	13,0

Prosječna providnost otvorenog mora ispred B. zaliva za juli iznosi 23 m (Lepetić, 1965.).

Kao što se vidi, providnost mora u Zalivu znatno je manja od one otvorenog dijela Jadranskog mora, a takode i od providnosti mora u zalivima i kanalima sjevernog Jadrana, gdje je po Krčmaru (1926.) prosjcěna providnost i\% 6 zaliva i kanala (Kvarnerié - 21,5, Planinski kanal - 17,9 , Crikvenički - 13,0 , Senjska vrata - 17,0 , Rijecki zaliv - 13,0 , Vela vrata - $19,0 \mathrm{~m}$) iznosila $18,3 \mathrm{~m}$.

V MAKRO-MOLLUSCA BOKOKOTORSKOGZALIVA

Sistematska pripadnost i popis vrsta
Klasa: Gasteropoda
Potklasa: Prosobranchia
Red: Archaeogasteropoda
Familija: HALIOTIDAE
Haliotis Iamellosa LAMK.
Familija: FISSURELLIDAE
Diodora gibberula LAMK. ($=$ Fissurella)
Diodora graeca L. (=Fissurella)
Emarginula fissura L.
Familija: PATELLIDAE
Patella coerulea L.
Patella Lusitanica GMEL.
Patella vulgata L.

Familija: TROCHIDAE
Calliostoma zizyphinum L. (=Trochus zizyphinus L.-Zizyphinus Linnaei MONTER)
Calliostoma conulus L. (=Zizyphinus conulus BRUS.)
Calliostoma laugieri PAYR.
Monodonta turbinata BORN. (=Osilinius)
Cantharidus striatus L. (=Trochus striatus L.)
Gibbula magus L. (=Trochus magus L.)
Gibbula divaricata L.
Gibbula umbilicaris L. (=Gibbula umbilicalis MONT.)
Gibbula obliquata GMEL. (=adriatica PH.)
Clanculus corallinus GMEL. (=Trochus pharaonis OL.)
Familija: TURBINIDAE
Astraea (Bolma) rugosa L. (=Turbo rugosus, L.-Astralium rugosum FISCH.)
Leptothyra sanguinea L. (=Turbo sanguineus L.)
Red: Mesogasteropoda
Familija: LITTORINIDAE
Littorina neritoides L.
Familija: TURRITELLIDAE
Turritella tricarinata BR. f. communis RISSO (=communis RISSO) Familija: VERMETIDAE
Vermetus (Serpulorbis) arenarius L. (=Vermetus gigas BIV.)
Vermetus (Petaloconghus) subcancellatus BIV. (=Vermetus glomeratus L.)
Familija: CERITHIIDAE
Cerithium vulgatum BRUG.
Cerithium rupestre RISSO
Cerithium sp.
Familija: EPITONIIDAE
Scala communis LAMK.

Familija: MELANELLIDAE
Strombiformis subulata DONOVAN
Familija: CAPULIDAE
Capulus hungaricus L.
Familija: CALYPTRAEIDAE
Calyptraea chinensis L.
Crepidula moulinsii MICH.
Familija: APORRHAIDAE
Aporrhais pes-pelecani L.
Familija: NATICIDAE
Natica josephinia RISSO
Natica millepunctata LAMK.
Natica hebraea MART.
Natica sp.
Polynices (Lunatia) alderi FORBES
Familija: ERATOIDAE
Trivia adriatica MONTEN
Primovula adriatica COW.
Familija: CYPRAEIDAE
Cyprea lurida L.
Cyprea pyrum GM.
Cyprea spurca L.
Familija: CASSIDIDAE
Cassidaria echinophora L.
Familija: DOLIIDAE
Dolium galea L.
Red: Neogasteropoda
Familija: MURICIDAE
Murex trunculus L.
Murex brandaris L.

Tritonalia erinacea L. (=Murex erinaceus L.)
Familija: COLUMBELLIDAE
Columbella rustica L .
Familija: BUCCINIDAE
Buccinulum corneum L. (-Eutria cornea ADANS.)
Pisania maculosa LAMK.
Familija: NASSARIDAE
Nassarius (Hinia) pygmaeus LAMK. (=Nassa pygmaea SOW.)
Nassa (Hinia) costulata RENIER (-Nassarius-Telasco-costulatus RENIER)

Nassarius (Hinia) reticulatus L. (-Nassa reticulata FLEM.)
Nassarius (Sphaeronassa) mutabilis L. (-Nassa mutabilis PETIT.)
Nassa neritea L. ($=$ Neritula neritea L.)
Familija: FASCIOLARIIDAE
Fusinus (Aptyxis) rostratus OLIVI ($=$ Fusus rostratus DESH.)
Fusinus (Aptyxis) syracusanus L. (二Fusus syracusanus LAMK.)
Fusus pulchellus PHIL.
Fasciolaria sp.
Familija: MITRIDAE
Mitra ebenina LAMK. (=ebenus)
Familija: CONIDAE
Conus mediterraneus BRUG.
Potklasa: Opistobranchia
Red: Tectibranchie
Familija: PHILINIDAE
Philine aperta L.
Klasa: Amphineura
Potklasa: Polyplacophora
Red: Teleoplacophora
Familija: CHITONIDAE

Chiton olivaceus SPENG.
Klasa: Scaphopode
Familija: DENTALIIDAE
Dentalium (Antalis) dentale L. ($=$ D. striatum BRUS.)
Dentalium (Antalis) vulgare DA COSTA ($=$ D. tarentinum LAMK.)
Klasa: Bivalvia
Red: Protobranchia
Familija: NUCULIDAE
Nucula nucleus L.
Familija: LEDIDAE
Leda fragilis SHEM.
Leda pella L.
Red: Filibranchia
Podred: Taxodonta
Familija: ARCIDAE
Anca barbata L.
Arca noae L. (=Navicula noae L.)
Arca tetragona POLI
Arca lactea L. (=trigonodesma)
Area diluvii LAMK.
Familija: GLYCYMERIDAE
Glycymeris pilosa L. (=Pectunculus giycymeris L.)
Glycymeris violacescens LAMK. (=Pectunculus insubricus SANDRI)
Glycymeris glycymers L.
Podred: Anisomyaria
Familija: MYTILIDAE
Mytilus galloprovincialis LAMK,
Brachyodontes (Mytilaster) minimus POLI ($=$ Mytilus minimus POLI) Modiolus barbatus L.
Lithophaga lithophaga L. (=Lithodomus lithophagus L.-Lithophaga mytiloides RÖD.)

Familija: PTERIIDAE
Pteria hirundo L. (=Avicula hirundo L.)
Avicula tarentina LAMK.
Familija: PINNIDAE

Pinna nobilis L

Pinna pectinata L. (-truncata PHL.)
Familija: PECTINIDAE
Pecten jacobaeus L.
Chlamys (Aequipecten) opercularis L. (=Pecten opercularis LAMK.)
Chlamys glabra L. (=Pecten glaber CHEMN.)
Chlamys varia L. (=Pecten varius LAMK.)
Familija: SPONDYLIDAE
Spondylus gaederopus L.
Familija: LIMIDAE
Lima lima L. (=Lima (Radula) squamosa LAMK.)
Lima hians GMEL.
Familija: ANOMIIDAE
Anomia ephippium L.
Familija: OSTREIDAE
Ostrea edulis L.
Red: Eulamellibranchia
Podred: Heterodonta
Familija: ISOCARDHDAE
Isocardia cor L. (=Clossus rubicundus POLI)
Familija: LUCINIDAE
Divaricella divaricata L .
Loripes lacteus L. (=Lucina fragilis PHIL)
Familija: CHAMIDAE
Chama gryphina LAMK. (=Chama gryphoides L.)
Chama lamellosa LAMK.

Familija: CARDIIDAE
Cardium edule L .
Cardium tuberculatum L. (=Acanthocardia tuberculatum L.)
Cardium paucicostatum SOWERBY (=Rudicardium)
Cardium echinatum L.
Cardium exiguum GMEL. (=Parvicardium)
Laevicardium oblongum GMEL.
Familija: VENERIDAE
Pitar rudis POLI ($=$ Cytherea rudis POLI)
Dosinia lupina L. (=Dosinia lupinus POLI)
Venus verrucosa L.
Venus (Chione) gallina L. (=Dosinia exoleta L.-Chameted gallina L.)
Venus fasciata DONOV.
Venerupis decussata L. (-Tapes decussatus L.)
Venerupis aureus GMEL. (=Tapes aureus FORB. i HANL.)
Irus irus L. (=Venerupis irus LAMK.)
Familija: MACTRIDAE
Mactra corallina L. (=Mactra stultorum L.)
Familija: MESODESMATIDAE
Donacilla cornea POLI ($=$ Mesodesma corneum PETIT.)
Familija: SANGUINOLARIDAE (PSAMMOBIIDIE)
Psammobia depressa PENNANT ($=$ Psammobia vespertina LAMK.)
Solenocurtus pellucidus L. (=Solecurtus)
Familija: SEMELIDAE
Scrobicularia plana DA COSTA
Familija: TELLINIDAE
Tellina distorta POLI
Tellina pulchela LAMK.
Tellina sp.

Podred: Adapedonta
Familija: SOLENIDAE
Solen vagina L.
Pharus legumen L.
Familija: HIATELLIDAE
Hiatella rugosa L. (-Saxicava rugosa LAMK.)
Hiatella arctica L. (-Saxicava arctica DESH.)
Familija: CORBULIDAE
Aloidis gibba OLIVI (-Corbula gibba JEFF.)
Familija: TEREDINIDAE
Teredo navelis L.
Podred: Anomalodesmata
Familia: THRACIDAE
Thracia combulordea DE BL.
Thracia sp.
Red: Septibranchia
Familija: CUSPIDARIIDAE
Cuspidaria (Neaera) cuspidata OLIVI
Klasa: Cephalopoda
Potklasa: Dibranchia
Red: Decapoda
Familija: SEPIIDAE
Sepia officinalis L. (-Sepia filliouxi LAFONT)
Sepia elegans D'ORB.
Familija: SEPIOLIDAE
Sepiola rondeletii LEACH
Sepiola oweniana D'ORB.
Sepiola petersii STSTRP.
Familija: LOLIGINIDAE
Loligo vulgaris LAMK.

Familija: OMMASTREPHIDAE

Todarodes sp.

Red: Octopoda
Familija: OCTOPODIDAE
Octopus vulgaris LAMK.
Eledone moschata LEACH

ANALIZA NADENIH VRSTA

HALIOTIS L.AMELIOSA LANK.

U Bokokotorskom zalivu je ova vrsta slabo rasprostranjena. Dâ se zapaziti da kod ove vrste broj jedinki i gustina opadaju iduci od Mercegnovskog ka Tivatskom i dalje ka unutrašnjem dijelu Zaliva. Na osnovu dosadašnjih istraživanja moglo bi se pretpostaviti da se ovdje radi o jednoj izrazitoj stenohalinoj i stenotermnoj formi. Zato se ova vrsta vrlo teško nalazi u Kotorskom i Risanskom zalivu, gdje je tokom većeg dijela godine ogroman priliv slatke vode. Zbog rijetke naseljenosti tesko se nalazi i u spoljašnjem dijelu Zaliva. Uglavnom naseljava stjenovito--hridinastu obalu u Hercegnovskom zalivu, a najviše ih je zapaženo na Cevrstom tlu, posebno na unutrasnjim (donjim) stranama kamenja ili stijena, na vrlo malim dubinama ($0,5-2,5 \mathrm{~m}$) od Igala u praveu rta Ostra (zapadna obala Hercegnovskog zaliva), gdje uglavnom nalazimo ziive jedinke ove vrste. Za vrijeme noći pokazuje veću aktivnost, jer tada traga za algama kojima se hrani.

DIODORA GIBBERULA LAMK.

Ova vrsta je zastupljena relativno malim brojem jedinki, mada je podjednako rasprostranjena u čitavom Zalivu. Redovito se nalazi na stjenovitim obalama, često ispod kamenja, izmedu spužvi, a nekada se nade i između algi. Pronadeni primjerci su malih dimenzija ($10 \times 6 \times 4$), a najveci primjerci najceste se nalaze u prodoru Veriga na dubini od 1 m na neravnoj i okomito hridinastoj obali. Prema onome kako stmo je nalazili moglo bi se pretpostaviti da je ova vrsta rasprostranjena u obalnoj zoni na dubini od 0,80 do $1,5 \mathrm{~m}$.

DIODORA GRAECA L.

Redovno se nalazi uz stjenovitu obalu priljubljena uz kakvu stijenu, greben ili kamen, a vrlo se cesto može naći u udubljenjima i pukotinama stijena. Rasprostranjena je u čitavōm Zalivu, mada se dâ zapaziti da je
u spoljašnjem dijelu Zaliva zastupljena znatno većim brojem jedinki. Tu su nađene jedinke i nešto krupnije (veće) i najčešće se nalaze u obalnoj zoni na dubini od 1 do $1,5 \mathrm{~m}$. U Kotorskom i Risanskom zalivu nalaze se nešto dublje ($1,2-2,80 \mathrm{~m}$) i znatno su sitnije. Prosječna veličina nadenih primjeraki u Hercegnovskom i Tivatskom zalivu iznosi $16 \times 9 \times 6$, a u Kotorskom i Risanskom $10 \times 6 \times 4 \mathrm{~mm}$. Na ovakvu rasprostranjenost ove vrste, možemo pretpostaviti, uticalf su raspored i količina hlorida u morskoj vodi u Zalivu.

EMARGINULA FISSURA L.

Ova vrsta naseljava slična područja kao i prethodne dvije, samo za razliku od njih ova je vrsta vrlo rijetko naseljena. U Kotorskom i Risanskom zalivu uopšte nije nađena, a takode i u Tivatskom. Nadena je na ulazu u Bokokotorski zaliv kod rta Oštra na dubini od 0,80 do $1,5 \mathrm{~m}$, na neravnoj i okomito hridinastoj obali među algama. I na tom području (pozicije 79, 86) teško se nalazi jer je vrlo rijetko naseljena.

Dijametar najveçe pronadene ljušture iznosi $7,5 \times 5 \times 3 \mathrm{~mm}$.

PATELLA COERULEA L.

Ova vrsta je rasprostranjena u citavom Zalivu i to u velikom broju jedinki. Najguşce naseljava obalnu zonu Risna, Perasta, Veriga i hridinaste obale poluostrva Luštica. Najveći broj jedinki ove vrste naseljava zonu plime i oseke, a mogu se naći žive jedinke i na dubini do $2,5 \mathrm{~m}$. Cesto ostaje na suvom za vrijeme oseke. Ova vrsta ne podnosi dubinu, a povremeni boravak van vode ne pričinjava joj nikakve teškoće.

Cesto se na stijenama koje naseljava ovaj gastropod mogu vidjeti plitka udubljenja koja oni buše mehaniěki svojim stopalom ili pomoću jedne kiseline koju luče specijalne žlijezde stopala.

Dužina ljušture kreće se do 45 mm .

PATELLA LUSITANICA GMEL.

Rasprostranjena je u čitavom Zalivu ali neravnomjerno. U Kotorskom i Risanskom zalivu je vrlo rijetko naseljena i zato ju je dosta teško pronači, dok je u Tivatskom, a posebno u Hercegnovskom dosta česta vrsta. Redovno naseljava hridinasta i stjenovita područja plime i oseke, a ponekad se može naći i iznad te zone (pozicija 79). Takođe se pronalaze Zive jedinke u zoni oseke na šljunkovito-kamenitoj obali naselja Bijela (pozicija 62). U Hercegnovskom zalivu mjestimično se mogu pronaći grupisane.

Dư̌ina ljušture kreée se do 25 mm .

PATELLA VULGATA L.

Jedinke ove vrste rasprostranjene su po čitavom Zalivu u zoni plime I oseke, Rijetko se nalaze u udubljenjima i pukotinama stijena i hridina gdje ne dopire svijetlo i gdje nijesu naseljene alge. Takode, često se mogu nać, i to brojno, u zoni oseke i u onim podruccjima gdje je priliv slatke vode tokom godine velik, kao i u onim sa tipiènim bočatnim vodama (pozicije 9,20). Nalaze se i na dubini od 1 m , pa čak i većoj, na stjenovitoj hridinastoj obalnoj zoni u Hercegnovskom zalivu koja je izložena udaru talasa.

Ovo je najkrupniji predstavnik roda Patella koji zivi u Zalivu; vrlo su česti primjerci do 50 mm .

CALLIOSTOMA ZIZYPHINUM L.

Ova vrsta je najbrojnije zastupljena u Hercegnovskom zalivu i kako se ide ka otvorenom moru njihov broj se povecava. Pronalazi se i u Tlvatskom, dok se u Risanskom i Kotorskom zalivu vrlo rijetko i teško nalazi. (Ovakva distribucija karakteriše i ostale vrste ovog roda). Karakteristiěno je da se u spoljašnjem dijelu Zaliva može često naći ispod kamenja, među algama, uglavnom na tyrdim dnima, i to na dubini od 1 do 3 m , dok u Kotorskom i Risanskom zalivu na znatno većim dubinama (oko $10-15 \mathrm{~m}$) u vrlo malom broju, i to najčešée na tvrdim dnima obraslim algama (Cystoseira). U Hercegnovskom zalivu često se nalaze prazne ljušture među kamenjem i ssljunkovitim pijeskom na području naselja Bijela (pozicija 62).

CALLIOSTOMA CONULUS L.

Zastupljena je relativno malim brojem jedinki; nalazi se u citavom Zalivu, samo je kao i prethodna neravnomjerno zastupljena. U Hercegnovskom i Tivatskom zalivu zastupljena je ralativno većim brojem jedinki, dok je u Kotorskom i Risanskom zalivu vrlo rijetka. Naseljava tvrda obalna područja obrasla algama. Najčešče se nalazi između krupnog kamenja, kao i na podvodnim stijenama i hridinama na dubini do 10 m. U Kotorskom zalivu nalazi se i na muljevito-pjeskovitom dnu mjestimično obraslom morskim cvjetnicama (Zostera) na dubini od 5 do 10 m . Na istraživanim pozicijama u Hercegnovskom zalivu nalaze se prosjec̃no 1-2 jedinke na m.

CALLIOSTOMA LAUGIERI PAYR.

U Bokokotorskom zalivu je ova vrsta nađ̈ena na pozicijama 59, 79, 84 i 86 u Tivatskom i Hercegnovskom zalivu. U unutrašnjem dijelu Zaliva nije nađena, mada je u spoljašnjem dijelu Zaliva zastupljena re-
lativno malim brojem jedinki i tesko se pronalazi. Redovno se nalazi na tvrdim dnima najcescée obraslim algom Cystoseira na dubini od 1,5 do 5 m. Najbrojnije je zastupljena jedinkama u obalnoj zoni poluostrva Lusstica (pozicija 86).

MONODONTA TURBINATA BORN.

Jedinke ove vrste žive obično na maloj dubini na čvrstim dnima, najčešće krupnom kamenju, stijenama i hridinama na dubini od 0,5 do $1,5 \mathrm{~m}$. Ova vrsta je rasprostranjena ui čitavom Zalivu i zastupljena relativno velikim brojem jedinki. $\mathrm{Na} \mathrm{m}^{2}$ ispitivane površine, skoro na svim ispilivanim pozicijama, nalazi se i do 15 živih jedinki. Jednako gusto naseljava čitav Zaliv. Na mjestima mijeşanja slatke i slane vode takode je gusto naseljena, sto dokazuje da se sasvim dobro prilagodila životu u tim promjenljivim uslovima. Vrio se često može vidjeti da živi u zoni plime i oselke. Kraći boravak van vode za vrijeme oseke, kao i za vrijeme uzburkanosti u obalnom podruéju rta Oštra, Herceg-Novog i polunstrya Luštice podnosi dobro, kao i Pulella. Na sljunkovito-pjeskovitoj plaži Bijele (pozicija 62), Tivta (pozicija 46) i Herceg-Novog (pozicija 72, 86) se nalave u velikom broju prazne ljušture ove prste. Dosta su krupne, dostižu dužinnu od 28 mm .

CANTHARIDUS STRIATUS L.

Ova vrsta je nađena na pozicijama 62, 75, 79 i 86 u Hercegnovskom zalivu na tvrdoj podlozi, između kamenja i na stjenovito-hridinastoj podlozi obrasloj algama. U Risanskom i Kotorskom zalivu nije nađena. I kod ove vrste može se pratiti kako se broj jedinki povećava prema rtu Oštra I dalje prema otvorenom moru. Zive na dubini od 5 do 20 m , mada smo pomoću drede hvatali primjerke i sa dubine od 30 m . Ponekad se mogu naći na malim dubinama i tada se nalaze usamljene jedinke i u malom broju. Pronađeni primjerci su vrlo sitni i ni jedan ne prelazi duSinu od 9 mm .

gibbula magus l.

Rasprostranjena je u čitavom Zalivu. Ova vrsta naseljava ista podruçja koja naseljavaju predstavnici roda Calliostoma, samo ta razliku od njih ova se vrsta javlja u relativno večem broju jedinki. Na ispitivanim pozicijama u Zalivu nalazili smo zive jedinke ove vrste na dubini od S do 15 m na različitim podlogama. Najgus̉če naseljava hridinasto-kamenite i sljunkovite obale tjesnaca Verige. U tom dijelu Zaliva (pozicije 41, 43 i 44) $\mathrm{na} \mathrm{m}^{\prime}$ ispitivane površine nalazili smo i do 6 živih jedinki ove vrste.

Poznato je da se u litoralnoij zoni Jadrana ova vrsta redovno nalazi
tua dubini ispod 10 m , dok po nekim autorima (Conei, Ghisotti i Arfelli, 1906.) nalazi se na dubini od 5 do 100 m .

Najkrupnija nađena ljuštura imala je u osnovi 24 mm .

gIbBULA DIVARICATA L.

U Bokokotorskom zalivu je ova vrsta nađena na pozicijama 27, 51 , 74 i 79 u Kotorskom, Tivatskom i Hercegnovskom zalivu. Zastupljena je 4 relativno malom broju jedinki, a nešto se u vecem broju javlja u Hercegnovskom i Tivatskom u odnosu na unutrašnji dio Zaliva, gdje se zbog rijetke naseljenosti i relativno malog broja vrlo teško nalazi. Obično se nalazi na dubini od 2,5 do 5 m , i to na čvrstoj podlozi obrasloj algama.

Najveća ljuštura imala je u osnovi 14 mm .

GIBBULA UMBILICARIS L.

Ova vrsta je u Bokokotorskom zalivu nadena na pozicijama 70, 73 i 79 u Hercegnovskom zalivu, dok u unutrašnjem dijelu Zaliva nije nađena. Nađeno je svega 6 primjeraka ove vrste od kojih samo dvije žive jedinke, na dubini od 2 do 15 m , i to na ěvrstof podlozi obrasloj algama.

Najveća ljuštura je u osnovi široka 19 mm .

GIBBULA OBLIQUATA GM.

I ova vrsta je vrlo rijetko naseljena u Bokokotorskom zalivu. Nadeno je samo nekoliko primjeraka oko ostrva Mamula na samom ulazu u Zaliv na dubini od 2 do 10 m , i to između kamenja, na stijenama i hridinama obraslim algama (pozicija 84). Nađeni primjerci ljušture, kao i nađene žive jedinke, vrlo su sitni i ne prelaze u osnovi sirinu od 6 mm .

CLANCULUS CORALLINUS GM.

U Bokokotorskom ralivu je ova vrsta nađena na pozicijama 60,79 i $84 u$ Tivatskom i Hercegnovskom zalivu. Najčešće se nalaze usamljene jedinke na krupnijem kamenju, hridinama i stijenama obraslim algama na dubini od 8 do 23 m . Najviše se nalaze na ulazu u Zaliv oko poluostrva Luštica i ostrva Mamula. Poznato je da u otvorenom dijelu srednjeg i sjevernog Jadrana ova vrsta živi na dubini i do 200 m .

Pronadeni primjerci ove vrste dosta su sitni i ne prelaze širinu u usnovi od 9 mm .

Ova vrsta je u Bokokotorskom zalivu nadena na pozicijama 15, 46, 66, 70 i 74 u Kotorskom, Tivatskom i Hercegnovskom zalivu. Nadeno je svega nekollko jedinki na tvrdoj podlozi obrasloj algama (fitalna zona) na dubini $15-30 \mathrm{~m}$, mada je poznato da se na otvorenom dijelu južnog Jadrana nalaze na znatno vecoj dubini (i do 80 m .). Na pozicijama 66, 70 i 74 u Hercegnovskom zalivu nađeni su brojni juvenilni stadiji; isti slučaj nije zapažen i na ostalim pozicijama u Zalivu.

Najveći pronađeni primjerak ima u osnovi 42 mm .

LEPTOTYRA SANGUINEA L.

U Bokokotorskom zalivu je ova vrsta nađena na poziciji 7 K u Hercegnovskom zalivu (G. Karaman i H. Gamulin-Brida, 1965.). Nadeno je svega 5 jedinki ove vrste na dubini do 25 m na podlozi sličnoj onoj koju nastanjuje prethodna vrsta.

Nađene jedinke su vrlo sitne, a najveći primjerak ima u osnovi 6 mm.

LITTORINA NERITOIDES L.

Ova vrsta je zastupljena u citavom Zalivu, i to relativno velikim brojem jedinki. Mjestimično se może naći na m^{1} ispitivane površine i do 80 živih jedinki (pozicija 70). I kod ove vrste možemo vidjeti da je zastupljena u spoljašnjem dijelu Zaliva većim brojem jedinki. Z̄ivi na stijenama u malim udubljenjima, a cesto se nalazi u mlatnoj zoni iznad oseke do 1 m , kao i u samoj zoni oseke. Najçesce se nalaze u malim grupicama u pukotinama i brazgotinama stijena (što su više uvučene u pukotinu tim su jedinke sitnije, dok su po obodu naseljene krupnije jedinke) na neravnim hridinama obraslim, najčešce, modrozelenim algama. Karakteristično je i za ovo ispitivano područje da su hridine i stijene okrenute k jugu brojnije naseljene od sličnih okrenutih sjevernoj strani. Vrlo lako otpadaju od podloge pri dodiru.

Prosječna dužina ljušture iznosi 5 mm .

TURRITELLA TRICARINATA BR. F. COMMUNIS RISSO

Ovo je jedna pelofilna stenovalentna vrsta koja naseljava čitavi Bokokotorski zaliv, ali se ne javlja skoro nigdje u velikom broju. Ova vrsta naseljava pretežno mekana muljevita područja (a takvo je velikim dijelom čitavo dno Zaliva) gdje se redovno nalaze žive jedinke. Takva područja sa živim Turritella-ma u srednjem i sjevernom Jadranu Vatova
(20) smatra posebnom zoocenozom azoocenozi Turritellak, dok se prema novijim istraživanjima (Peres i Picard, 1958.) takvi lokaliteti smatraju Turritella tricarinata f. communis u okviru biocenoze obalnog terigenog mulja (G. Karaman i H. Gamulin-Brida, 1965.).

U ljepljivom mulju zahvaćenom grabilom, dređom ili kǒ̌om nalaze se céesto prazne ljušture, it to ponekad u znatnom broju. Tako npr. na poziciji 71 u Hercegnovskom zalivu na m^{2} ispitivane površine nađeno je od 20 do 50 jedinki, ali je i tu oko 50% jedinki bilo mrtvih. (G. Karaman i H. Gamulin-Brida, 1965.).

Prosječna dužina ljuşture iznosi 35 mm .

VERMETUS (SERPULORBIS) ARENARIUS L.

U Bokokotorskom zalivu je ova vrsta nadena na pozicijama 25,28 , 41, 79, 84 i 86 u Kotorskom zalivu, tjesnacu Verige i Hercegnovskom zalivu. Naseljava obalnu zonu i vrlo se teško nalazi jer je slabo rasprostranjena i zastupljena je relativno malim brojem jedinki. Ipak se dâ zapaziti da je u Hercegnovskom zalivu ova vrsta zastupljena većim brojem jedinki. Nadena je na dubini od 3 do 10 m priévršćena za kakav kamen ili neki drugi podvodni predmet, i to najčešce sa donje strane. Ponekad se može vidjeti kako su se jedinke ove vrste prihvatile za ljušture drugih mekušaca.

VERMETUS (PETALOCONCHUS) SUBCANCELLATUS BIV.

Jedinke ove vrste vrio su slabo rasprostranjene u Zalivu i zastupljene su relativno malim brojem. Ova vrsta je nađena na poziciji 77 i 84 u Hercegnovskom zalivu na tvrdoj podlozi; nadena su svega tri primjerka na dubini od 10 do 18 m .

CERITHIUM VULGATUM BRUG.

Ova vrsta naseljava čitav Zaliv i zastupljena je vrlo velikim brojem jedinki. Lako se nalazi, ali ipak najgušce naseljava pješčana dna Zaliva. Cesto se nalazi ispod krupnog kamenja obraslog algama. Dok su još mladi i vrlo sitni żive kao fital na Cystoseiri. Isto tako naseljava lagune ušéa rijeka (pozicija 8). Vrlo dobro podnosi česte promjene u salinitetu vode i zato se često nalazi na mjestima gdje se tokom čitave godine stalno mijeşaju slatka i slana voda. Isto tako naseljava pjeskovito-muljevitu podlogu obraslu morskim evjetnicama, kao i algama (pozicije 46, 63 i 76). Z̄ivi na dubini od 10 do 25 m , a mjestimično i više, dok se prazne ljušture nalaze na vrlo malim dubinama.

Na osnovu brojnog sakupljenog materijala kod ove vrste u Zalivu uočavaju se razni varijeteti i podvarijeteti.

Nekoliko nađ̂enih jedinki ove vrste (15) imale su ljušturu gusto obraslu algom Dasychladus clavaeformis AGARDH. Tu izgleda da se radi o izvjesnoj simbiozi ovih dvaju organizama. Na osnovu dosadašnjeg prouçavanja ove vrste u Bokokotorskom zalivu moz̃emo pretpostaviti da je ovo jedna curivalentna vrsta koja je na pojedinim mjestima u Zalivu, zbog velike brojnosti jedinki, i dominantna.

Dužina najveće nađene ljuşture iznosi 65 mm .

CERITHIUM RUPESTRE RISSO

Naseljava obalnu plitku zonu Zaliva, i to na vrlo maloj dubini $(0,80-2,5 \mathrm{~m})$. Ova vrsta je zastupljena relativno malim brojem jedinki: nađeno je svega nekoliko komada. Nalazi se među kamenjem, u plitkim udubljenjima stijena, kao i na pjeskovitoj podlozi.

Dužina ljušture iznosi 20 mm .

CERITHIUM SP.

Nadene su dvije prazne ljušture ove vrste u Kotorskom zalivu na pjeskovitoj podlozi na dubini od 5 m (pozicija 16). Ljuštura umnogome podsjeća na C. vulgatum BRUG. samo je jako šiljata i nešto uža. Zidovi ljušture su dosta tanki i nježni, žučkastosmeđe boje. Dužina ljušture iznosi 30 mm .

SCALA COMMUNIS LAMK.

Ova vrsta je nadena na pozicijama $1 \mathrm{~K}, 7 \mathrm{~K}$ i 78 u Kotorskom i Hercegnovskom zalivu. Vrlo je rijetko naseljena i zastupljena relativno malim brojem jedinki. Naseljava mekana muljevita podruçja obrasla Zosterom na dubini od 5 do 17 m .

Dužina ljušture iznosi 19 mm .

STROMBIFORMIS SUBULATA DON.

U Bokokotorskom zalivu je ova vrsta nadena na pozicijama 1 K i 2 K u Kotorskom zalivu. Rijetko je naseljena i zastupljena relativno malim brojem jedinki. Nalazi se na muljevitoj podlozi na dubini od 30 m .

Nadeno je svega nekoliko prímjeraka ove vrste i najveća ljuštura je duga 10 mm .

CAPULUS HUNGARICUS L.

U dosadašnjim istraživanjima ova vrsta je nađena na pozicijama 84 i 86 u Hercegnovskom zalivu na tvrdoj podlozi, na podvodnim stijenama

I krupnom kamenju, djelimično obraslim algama na dubini od 10 do 30 m . Nađeno je svega 8 primjeraka ove vrste. Pošto je ovo obalna forma, često se nalazi na ljušturama drugih mekušaca, najčeşce şkoljki.

Nađeni primjerci su malih dimenzija i u osnovi ne prelaze dužinu od 10 mm .

CALYPTRAEA CHINENSIS L.

Ova vrsta je rasprostranjena po citavom Bokokotorskom zalivu, mada je zastupljena relativno malim brojem jedinki. Zive usamljene ssto je doprinijelo da je naden vrlo mali broj jedinki. Jedinke ove vrste nađene su na pozicijama $1 \mathrm{~K}, 2 \mathrm{~K}, 4 \mathrm{~K}, 7 \mathrm{~K}, 8 \mathrm{~K}$ i dr. Nalaze se na dubini do 40 m , i to na mekanoj podlozi, pričvř̌̌̌ene pri kakvom évrstom predmetu.

Dužina ljušture iznosi 7 mm .

CREPIDULA MOULINSII MICH.

U Bokokotorskom zalivu je ova vrsta nadena na pozicijama $1 \mathrm{~K}, 3 \mathrm{~K}$, 9K i dr. Rasprostranjena je u većem dijelu Zaliva dosta rijetko i zastupljena je relativno malim brojem jedinki, Nadene ljussture su malih dimenzija i ni jedna ne prelazi đužinu od 7 mm . Ova vrsta je nadena na muljevito-pjeskovitoj podlozi na dubini do 40 m .

APORRHAIS PES-PELECANI L.

Ova pelofilna stenovalentna vrsta relativno je brojno zastupljena u čitavom Bokokotorskom zalivu. Nadena je na pozicijama $2 \mathrm{~K}, 3 \mathrm{~K}, 5 \mathrm{~K}, 6 \mathrm{~K}$, $9 \mathrm{~K}, 9 \mathrm{~K}$ i dr. na muljevitoj podlozi na dubini od 15 do 55 m .

U okviru ove vrste primjećuju se varijeteti i podvarijeteti. Ova vrsta je najbrojnije zastupljena u unutras̊njem dijelu Zaliva, na poziciji 2 K , gdje se jednim potezom povlačne mreže lovilo do 10 jedinki.

Dužina ljušture iznosi 53 mm .

NATICA JOSEPHINIA RISSO

Ova vrsta je u Bokokotorskom zalivu nađena samo na poziciji 71 4. Hercegnovskom zalivu gdje je zastupijena u relativno velikom broju jedinki (na m" ispitivane poyršine nalazi se i do 15 jedinki). Podloga na kojoj je naseljena ova vrsta je sačinjena od najfinijeg mulja, koji sadrži i cestice radioaktivnih elemenata i kao takav se koristi u poznatom lječilištu u Igalu kraj Herceg-Novog. Na samoj obali, takode u mulju if finom pijesku, nalaze se brojne prazne ljušture izbačene morskim strujama i talasima koji su na ovom području vrlo jaki. Mnoge prazne ljuš-
ture nalaze se zarivene dublje u mulj, najčešce prekrivene debljim slojevima izumrlih morskih algi i evjetnica.

Na osnovu dosadašnjeg proučavanja, a posebno na osnovu rasprostranjenosti ove vrste, moglo bi se pretpostaviti da je ovo jedna stenovalentna, stenohalina i stenotermna vrsta.

Nadena je na dubini od 5 do 15 m ; prosječna veličina ljušture iznosi 31 mm .

NATICA MILLEPUNCTATA LAMK.

U Bokokotorskom zalivu je ova vrsta nađena na pozicijama $1 \mathrm{~K}, 2 \mathrm{~K}$, 17 i 71 u Kotorskom i Hercegnovskom zalivu. I ova vrsta je rijetko naseljena i zastupljena relativno malim brojem jedinki. Naseljava muljevito--pjeskovitu podlogu na dubini od 10 do 30 m . Ukupno je nađeno 11 primjerka ove vrste, od kojih je najveći dug 40 mm .

NATICA HEBRAEA MART.

Karakteristično je za ovu vrstu da je rasprostranjena po čitavom Bokokotorskom zalivu mada je zastupljena relativno malim brojem jedinki. Dosadašnja istraživanja pokazuju da je ova vrsta zastupljena u relativno većem broju jedinki u spoljašnjem dijelu Zaliva, a najveći broj primjeraka ove vrste nađen je na poziciji 71 u Hercegnovskom zalivu. Naseljava muljevito-pjeskovitu podlogu koja je djelimično obrasla morskim evjetnicama i nalazi se na dubini do 50 m .

Dužina ljušture iznosi 42 mm .

NATICA SP.

Pronađena su svega 3 primjerka ove vrste na poziciji 71 u Hercegnovskom zalivu na muljevitoj podlozi obrasloj morskim cvjetnicama na dubini od 10 do 15 m . Nađeni primjerci su vrlo sitni: najveći primjerak ne prelazi dužinu od 7 mm .

POLYNICES (LUNATIA) ALDERI FORBES

Ova vrsta je nadena na pozicijama 1 K , 11 i 17 u Kotorskom zalivu. Nađeno je svega 5 primjeraka ove vrste i nijedan primjerak ne prelazi dužinu od 4 mm . Zive na muljevitoj podlozi na dubini od oko 20 m . Na osnovu rasprostranjenosti ove vrste u B. zalivu, koliko je do sada poznato, moglo bi se pretpostaviti da ova vrsta preferira na ušcima jakih potoka, vrela i rječica.

TRIVIA ADRIATICA MONTEN

U Bokokotorskom zalivu je ova vrsta nađena na pozicijama $9 \mathrm{~K}, 82$ i 84 u Hercegnovskom zalivu. Nađena su svega 3 primjerka na pjeskovitoj podlozi, skoro na samom ulazu u Zaliv, na dubini od 20 do 50 m . I za ovu vrstu možemo pretpostaviti da naseljava samo ulaz u Bokokotorski zaliv, a da u ostalim djelovima uopšte nije naseljena.

Dužina ljušture iznosì 6 mm .

PRIMOVULA ADRIATICA SOW.

Jedinke ove vrste u Bokokotorskom zalivu nadene su samo na pozieijama 9 K i 83 u Hercegnovskom zalivu. Pronadene su na pjeskovitoj podlozi na dubini od 30 do $40 \mathrm{~m}, \mathrm{Na}$ ostalim ispitivanim pozicijama nije nadena, pa se takode i za ovu vrstu može pretpostaviti da ne naseljava ostala područja Bokokotorskog zaliva.

Dužina ljušture iznosì 6 mm .

CYPRAEA LURIDA L.

Ova vrsta je nađena na poziciji 34 u Risanskom zalivu na pjeskovitoj podlozi na dubini od 20 do 35 m . Može se pretpostaviti da je rijetko naseljena u Zalivu i da je zastupljena relativno malim brojem jedinki.

Dužina ljušture iznosi 55 mm .

CYPRAEA PYRUM GM.

U Bokokotorskom zalivu je ova vrsta nađena na poziciji 86 u Hercegnovskom zalivu. I za ovu vrstu se može pretpostaviti da je vrlo rijetko naseljena i zastupljena relativno malim brojem jedinki, jer je do sada naden samo jedan primjerak ove vrste. Međutim, poznato je da je u obalnom području srednjeg i južnog Jadrana, na pjeskovitom dnu, ova vrsta brojnije zastupljena.

Dužina ljušture iznosi 35 mm .

CYPRAEA SPURCA L.

Naseljava dno Zaliva i do sada je nađena na pozicijama 82 i 86 u Hercegnovskom zalivu. Zbog slabe rasprostranjenosti i relativno malog broja jedinki može se pretpostaviti da u ostalim djelovima Bokokotorskog zaliva ove vrste i nema, Nađena je na pjeskovitoj podlozi na dubinama od 30 do 50 m .

Nađena ljuştura je dosta krupna i ima dužinu od 38 mm .

CASSIDARIA ECHINOPHORA L.

Dosta je rijetko zastupljena u Bokokotorskom zalivu, i to relativno malim brojem jedinki. Ova vrsta je nadena na pozicijama 2 K , $3 \mathrm{~K} \perp 4 \mathrm{~K}$ u Kotorskom i Risanskom zalivu i ut tjesnacu Verige, ito nadeno je svega 5 primjeraka na pjeskovito-muljevitoj podlozi u zoni podvodnih livada. Zivi na dubini od 15 do 30 m .

Dužina ljušture iznosi 70 mm .

DOLIUM GALEA L.

U Bokokotorskom zalivu je ova vrsta nađena na pozicijama 6 K i 9 K u Tivatskom 1 Hercegnovskom zalivu. Na ostalim pozicijama nije nadena, sito ukazuje na slabu rasprostranjenost ove vrste u Zalivu. Takode se dì zakljuciti da je zastupljena relativno malim brojem jedinki (nadena su svega 4 primjerka ove vrste). Nađena je na muljevito-pjeskovitoj podlozi na dubinama od 30 do 60 m . Ponekada se mogu naći prazne ljušture u Hercegnovskom zalivu i na manjim dubinama ($6-15 \mathrm{~m}$) gdje ih morske struje i valovi dokotrljaju.

Dužina ljušture iznosi 179 mm .

MUREX TRUNCULUS L.

Ova euritermna i eurihalina vrsta zastupljena je vrlo velikim brojem jedinki u čitavom Bokokotorskom zalivu. Najgušce naseljava Kotorski i Risanski zaliv, i to uz samu obalu na dubinama od 0,80 do 5 m . Tu se može naći na krupnom kamenju, izmedu kamenja, na stijenama i hridinama obraslim raznim algama. U Hercegnovskom i Tivatskom zalivu (pozicije 5 K i 8 K) nadeno je nekoliko primjeraka na znatno većoj dubini ($15-30$) na pjeskovitoj podlozi. Ti primjerci bili su relativno sitni u odnosu na one koji se redovno i u velikom broju nalaze u obalnoj zoni u manjim dubinama. Takode se nalaze i na ušcima rječica i večih potoka i u blizini izvora (pozicije 4, 8, 20) sto ukazuje na to da dobro podnose duže ili kraće promjene u salinitetu morske vode i da su se prilagodili takvim uslovima zivota. U obalnoj zoni na m^{2} ispitivane poyršine nalazi se i do 10 živih jedinki ove vrste.

Dužina najveće ljušture iznosi 103 mm .

MUREX BRANDARIS L.

Rasprostranjena je u citavom Bokokotorskom zalivu, samo, za razliku od prethodne vrste, ova je zastupljena relativno manjim brojem jedinki. Karakteristično je i za ovu vrstu da guşée naseljava Kotorski i Risanski zaliv. Redovno se nalazi na tvrdoj podlozi u blizini ušća rijeka i jakih
izvora na dubinama od 5 do 15 m . Ovo ukazuje na to da i ova vrsta dobro podnosi promjene u salinitetu morske vode. U Hercegnovskom zalivu jedinke ove vrste nadene su na vecoj dubini $(20-40 \mathrm{~m})$ na poziciji 8 K , i to na pjeskovitoj podlozi.

Dužina ljušture iznosi 98 mm .

TRITONALIA ERINACEA L.

U dosadašnjim istraživanjima ova vrsta je nađena na pozicijama 3 K , 41, 43,44 i 45 u Risanskom zalivu i u tjesnacu Verige. Najgušce naseljava prodor Verige, gdje je zastupljena u relativno velikom broju jedinki, Tu naseljava čvrstu podlogu koja je rijetko obrasla algama, gdje se mogu naći na dubinama od 2 do 5 m . U Risanskom zalivu nađene su znatno dublje ($15-30 \mathrm{~m}$) na pjeskovitoj podlozi ut vrlo malom broju primjeraka (2).

Dužina ljušture iznosi 45 mm .

COLUMBELLA RUSTICA L.

Rasprostranjena je po čitavom Bokokotorskom zalivu. U Kotorskom i Risanskom zalivu zastupljena je relativno malim brojem jedinki i slabo je rasprostranjena, dok se, naprotiv, u Tivatskom i, posebno, u Hercegnovskom zalivu nalazi u matno vecem broju jedinki, a kako se ide ka rtu Oštra i otvorenom moru njihov-se broj osjetno povečava. Nadena je na ćvrstoj podlozi, medu šljunkom, sitnijim kamenjem, a često se nalazi i medu algama, i to na malim dubinama, od 1 do 3 m .

Dužina ljušture iznosi 20 mm .

BUCCINULUM CORNEUM L.

U Bokokotorskom zalivu je ova vrsta nađena na pozicijama 5 K i 7 K u Hercegnovskom zalivu. Može se pretpostaviti i za ovu vrstu da je rijetko naseljena u Zalivu i zastupljena relativno malim brojem jedinki. Poznato je da se u obalnoj zoni južnog Jadrana ova vrsta javlja mnogo ċešće i u većem broju jedinki. Nadena su svega 4 primjerka na pjeskovito--muljevitoj podlozi na dubinama od 15 do 40 m u zoni podvodnih livada.

Dužina ljušture iznosi 52 mm .

PISANIA MACULOSA LAMK.

Ova vrsta je rasprostranjena u znatnom dijelu Bokokotorskog zaliva i zastupljena je relativno velikim brojem jedinki. Najčešće se nalazi uz samu obalu na dubini do 4 m , na tvrdoj podlozi, ispod kamenja, u

Hljunku ili pijesku. Ponekad se, izbačene talasima, mogu naći i u mlatnoj zoni,

Dužina ljušture iznosi 12 mm .

NASSARIUS (HINIA) PYGMAEUS LAMK.

Rasprostranjena je u vecem dijelu Bokokotorskog zaliva i zastupljena je relativno velikim brojem jedinki. Nalazi se u blizini obale na dubini većoj od 3 m , mada se mnogo više nalazi na većim dubinama (do 40 m) na pjeskovito-muljevitoj podlozi djelimično obrasloj morskim cvjetnicama.

Dužinna ljušture iznosi 4 mm .

NASSA (HINIA) COSTULATA RENIJER

Ova vrsta je u Bokokotorskom zalivu nađena na poziciji 1 K u Kotorskom zalivu. Slabo je rasprostranjena i zastupljena malim brojem jedinki. Nađena je na muljevitoj podlozi obrasloj morskim evjetnicama na dubini od 18 do 30 m . Sakupljeni primjerci dosta su sitni i ni jedan ne prelazi dužinu od 13 mm .

NASSARIUS (HINIA) RETICULATUS L.

U Bokokotorskom zalivu je ova vrsta nadena u priobalnoj zoni na dubini od 2 do 8 m skoro u svim djelovima Zaliva. Zastupljena je relativno velikim brojem jedinki u citavom Zalivu, mada se zapaža da se javlja u većem broju jedinki u Tivatskom i Hercegnovskom zalivu i broj jedinki se povećava kako se ide ka otvorenom moru. Veliki broj jedinki ove vrste je naden u sjeverozapadnom dijelu Hercegnovskog zaliva (pozicija 63), gdje je na m^{2} ispitivane površine nadeno do 18 jedinki.

Dužina ljušture iznosi 29 mm .

NASSARIUS (SPHAERONASSA) MUTABILIS L.

Dosadašnja istraživanja su pokazala da je ova vrsta slabo rasprostranjena i do sada je samo pronađena na poziciji 71 u Hercegnovskom zalivu. Tu se javlja u relativno velikom broju jedinki. $\mathrm{Na} \mathrm{m}^{2}$ ispitivane površine nadena je 31 jedinka, mada je tu bilo $30 \overline{0} \%$ praznih ljuštura. Nadene su na muljevitoj podlozi koja je djelimično obrasla morskim cvjetnicama na dubinama od 3 do 15 m . Veliki broj praznih ljuštura se nalazi u pjeskovitom mulju na dubini od 0,5 do 2 m , kao i van vode gdje su ih talasi izbacilit. Vrlo je interesantno da i pored najbrižljivijeg dugogodišnjeg istraživanja nije pronadena ni na jednom drugom mjestu u

Bokokotorskom zalivu. Sama ta pojava, kao i rezultati dosadašnjih istraRivanja rasprostranjenosti ove vrste u litoralu Jadranskog mora, dopušta nam da pretpostavimo da i ova vrsta preferira fino muljevito dno na ubcima rijeka i većih potoka.

Dužina ljušture iznosi 25 mm .

NASSA NERITEA L.

Ova vrsta je u Bokokotorskom zalivu nadena na pozicijama 7 K i 71 u Hercegnovskom zalivu. Nađeno je svega 15 primjeraka ove vrste na muljevito-pjeskovitoj podlozi u zoni podvodnih livada, a na dubinama od 15 do 25 m . Nalaze se i na manjim dubinama ($1-5 \mathrm{~m}$), ali u malom broju jedinki.

Dužina ljušture iznosi 4 mm .

FUSINUS (APTYXIS) ROSTRATUS OLIVI

U Bokokotorskom zalivu je ova vrsta nađena na pozicijama 1 K , $4 \mathrm{~K}, 5 \mathrm{~K}$ i 9 K u relativno malom broju primjeraka (jednim potezom povlačnom mrežom nađene su 1-2 jedinke). Nađene su na muljevito-pjeskovitoj podlozi obrasioj morskim cvjetnicama na dubini do 45 m .

Dužina ljušture iznosi 40 mm .

FUSINUS (APTYXIS) SYRACUSANUS L.

U dosadašnjim istraživanjima u Bokokotorskom zalivu je ova vrsta nađena na poziciji 9K u Hercegnovskom zalivu. Nađena su svega tri primjerka na pjeskovitoj podlozi na dubini od 30 do 50 m . Na ostalim pozicijama u Zalivu nije nađena na osnovu čega možemo pretpostaviti da je ova vrsta naseljena samo na ulazu u Zaliv i da u ostalim djelovima nije ni zastupljena.

Dužina ljušture iznosi 25 mm .

FUSUS PULCHELLUS PHIL.

U Bokokotorskom zalivu je ova vrsta nađena na pozicijama 9 K i 84 u Hercegnovskom zalivu. Tu su nađena svega 2 primjerka na pjeskovitoj podlozi na dubinama od 25 do 48 m . I za ovu vrstu moz̃emo pretpostaviti da naseljava samo Hercegnovski zaliv, mada je i tu nađena u relativno malom broju primjeraka.

Dužina ljušture iznosi 15 mm .

FASCIOLARIA SP.

Ova vrsta je u Bokokotorskom zalivu nađena na poziciji 9 K u Hercegnovskom zalivu. Nađena su 3 primjerka ove vrste na pjeskovitoj podlozi na dubini od 40 m .

Dužina ljušture iznosi 26 mm .

MITRA EBENINA (EBENUS) LAMK.

Rasprostranjena je u Hercegnovskom zalivu, mada je itu nadena u malom broju primjeraka (15). Zivi na pjeskovitoj a djelimično i muljevitoj podlozi, na dubinama od 20 do 40 m . Najveći broj primjeraka nađen je na poziciji 5 K (9). Nalaze se i na manjim dubinama, ali su tada pretežno prazne ljušture.

Ljuštura je duga 25 mm .

CONUS MEDITERRANEUS BRUG.

Za ovu vrstu je karakteristično da je rasprostranjena u čitavom Zalivu, mada je zastupljena relativno malim brojem jedinki. Redovno se nalazi na malim dubinama ($3-10 \mathrm{~m}$) na pjeskovito-muljevitoj podlozi. Cesto se nalazi i na manjoj dubini $(0,5-1,5 \mathrm{~m})$ ali su tada pretežno prazne ljusture. Najkrupniji primjerci ove vrste nađeni su izmedu podvodnih grebena i hridina prodora Verige, Najveci broj primjeraka naden je na pozicijama 5 K i 7 K u Hercegnovskom zalivu.

Dužina ljušture iznosi 51 mm .

PHILINE APERTA L.

Nađena je samo na poziciji 1 K u Kotorskom zalivu na muljevito--pjeskovitoj podlozi koja je obrasla Zosterom na dubini do 28 m . Nađeno je svega 5 primjeraka ove vrste, i to vrlo malih dimenzija (4 mm).

CHITON OLIVACEUS SPENG.

Ovo je jedini predstavnik klase Amphineura koji je do sada nađen u Bokokotorskom zalivu. I sama ova vrsta je rijetko naseljena i zastupIjena je malim brojem jedinki. U Tivatskom i Hercegnovskom zalivu je mnogo brojniji i, kako se ide ka rtu Ośtra, gustina se povećava, dok su u Kotorskom i Risanskom zalivu nađene samo dvije jedinke, i to na znatno većoj dubini (8). U spoljašnjem dijelu Zaliva redovno se nalazi na podvodnim stijenama, ispod kamenja, u praznim ljušturama skoljaka, i to na dubini od 1 do 4 m . Nekoliko primjeraka nadeno je među izumrlim algama u zoni oseke (pozicija 70). Na ovakvu distribuciju ove vrste svakako
je uticala količina hlorida u morskoj vodi, jer se gustina i broj ove vrste povecava sa povecanjem saliniteta u morskoj vodi.

Dužina najvece pronađene ljušture iznosi 21 mm .

DENTALIUM (ANTALIS) DENTALE L.

U Bokokotorskom zalivu je ova vrsta nađena na pozicijama $1 \mathrm{~K}-9 \mathrm{~K}$ i dr., tj. rasprostranjena je po čitavom Zalivu. Nadena je na muljevitoj podlozi na raznim dubinama $(15-50 \mathrm{~m})$, i to u relativno velikom broju primjeraka. Najveci broj jedinki ove vrste naden je u Kotorskom i Risanskom zalivu, gdje se na m^{2} ispitivane povrsine nalazi $10-20$ jedinki (60% su prazne ljušture).

Prosječna dužina Ijušture iznosi 28 mm .

DENTALIUM (ANTALIS) VULGARE DA COSTA

Ova vrsta je u Bokokotorskom zalivu nadena na pozicijama $5 \mathrm{~K}, 6 \mathrm{~K}$, 7 K i 9 K u Tivatskom i Hercegnovskom zalivu. Nadenı je u relativno malom broju primjeraka na muljevito-pjeskovitoj podlozi na dubini do 50 m .

Dužina ljušture iznosi 41 mm .

NUCULA NUCLEUS L.

U Bokokotorskom zalivu je ova vrsta zastupljena relativno velikim brojem jedinki i rasprostranjena je po citavom Zalivu. Najveći broj jedinki nađen je u Tivatskom i Hercegnovskom zalivu (pozicije $5 \mathrm{~K}, 6 \mathrm{~K}$). Nađene su na muljevitoj i pjeskovitoj podlozi koja je djelimično obrasla morskim cvjetnicama, na raznim dubinama od 15 do 50 m .

Dužina ljušture iznosi 10 mm .

LEDA FRAGILIS SHEM.

Ova vrsta je u Bokokotorskom zalivu nađena na pozicijama 3 K , 4K, 40 i 42 u Risanskom zalivu i u prodoru Verige. Nadena je u relativno malom broju primjeraka na dubinama od 20 do 30 m . na muljevitoj podlozi. Slabo je rasprostranjena i na ostalim pozicijama nije nađena.

Dužina ljušture iznosi 7 mm .

LEDA PELLA L.

Rasprostranjena je po citavom Bokokotorskom zalivu, mada je zastupljena relativno malim brojem jedinki. Nuđena je na pjeskovito-mu-

Jjevitoj podlozi gdje su razvijene podvodne livade Cymodocea, Posidonie Zostere na dubinama od 20 do 40 m .

Dužina ljušture iznosi 10 mm .

ARCA BARBATA L.

Nalazi se dosta rijetko, mada je rasprostranjena u većem dijelu Zaliva. Nadena je u obalnoj zoni na dubini od 2 do 10 m . Naseljava kame-nito-hridinastu podlogu. Cesto se nalazi u udubljenjima stijena ili u napuštenim rupama nekog drugog školjkaša.

Dužina ljušture iznosi 36 mm .

ARCA NOAE L.

Ova vrsta je rasprostranjena po čitavom Bokokotorskom zalivu. Nalazi se u obalnoj zoni kao i na podvodnim grebenima i stijenama na dubini od 8 do 25 m . Zastupljena je u relativno velikom broju jedinki, a narocito se javlja u velikom broju u Hercegnovskom i Tivatskom zalivu, dok je u Kotorskom i Risanskom zalivu mnogo ređa. I kod ove vrste se može zapaziti da se broj jedinki, odnosno gustina povećava od unutrašnjeg dijela Zaliva ka spoljašnjem dijelu, odnosno ka rtu Ostra i otvorenom moru.

Nađeni primjerci su dosta krupni i srednja dužina ljušture iznosi 79 mm .

ARCA TETRAGONA POLI

U Bokokotorskom zalivu je ova vrsta nađena na poziciji 9 K u Hercegnovskom zalivu. Dosadašnja istraživanja pokazuju da je ova vrsta rijetko naseljena u Zalivu i da je zastupljena relativno malim brojem jedinki, Nadeno je svega 6 primjeraka ove vrste na pjeskovitoj podlozi djelimično obrasloj morskim cvjetnicama. Nadena je na dubini do 45 m .

Dužina ljušture iznosi 29 mm .

ARCA LACTEA L.

Rasprostranjena je u veéem dijelu Bokokotorskog zaliva, mada je zastupljena relativno malim brojem jedinki. Nađena je na pjeskovito--muljevitoj podlozi obrasloj morskim cvjetnicama. Najveći broj jedinki je naden na pozicijama 7 K i 9 K u Hercegnovskom zalivu. Zive na dubini od 18 do 40 m .

Dužina ljušture iznosi 25 mm .

ARCA DILUVII LAMK.

U dosadaక̌njim istraživanjima ova vrsta je nađena u Kotorskom i Hercognovskom zalivu, kao i u tjesnacu Verige (pozicije $1 \mathrm{~K}, 2 \mathrm{~K}, 4 \mathrm{~K}$ i 5 K). Yaslupljena je relativno malim brojem jedinki. Nadena je na muljevitopieskovitoj podlozi obrasloj morskim cvjetnicama na dubini od 15 do 30 in. Do sada je nadeno vrlo malo živih jedinki (4) i uglavnom se nalaze firnze ljušture.

Dužina ljušture iznosi 30 mm .

GLYCYMERIS PILOSA L.

I ova vrsta je rasprostranjena u véem dijelu Bokokotorskog zaliva, mada je zastupljena relativno malim brojem jedinki. Nađena je u Kotorskom i Hercegnovskom zalivu (pozicije $1 \mathrm{~K}, 7 \mathrm{~K}, 76$ i 82) na muljevitoNeskovitoj podlozi na dubini do $35 \mathrm{~m} u$ zoni morskih evjetnica.

Najkrupniji primjerci su nađeni u Kotorskom zalivu (pozicija 1K).
Dužina ljušture iznosi 90 mm .

GLYCYMERIS VIOLACESCENS LAMK.

Ova vrsta je u Bokokotorskom zalivu nađena na poziciji 5 K u Herregnovskom zalivu. Da sada su nadena svega dva primjerka ove vrste na pieskovitoj podlozi na dubini do 25 m . Kao što se vidi ova vrsta je slabo risprostranjena i zastupljena je relativno malim brojem jedinki. Poznato if međutim, da je u obalnom području južnog Jadrana, na veoma široko nasprostranjenom pjeskovitom dnu, ova vrsta relativno brojnije zastupIjena.

Dužina ljušture iznosi 32 mm .

GLyCYMERIS GLYCYMERIS L.

U Bokokotorskom zalivu je ova vrsta nađena na poziciji 9K u Herregnovskom zalivu. Nađena su svega tri primjerka ove vrste na pjeskovitoj podlozi, djelimično obrasloj morskim evjetnicama na dubini od 25 flo 55 m . I ova vrsta je slabo rasprostranjena u Zalivu i zastupljena sa malim brojem jedinki.

Dužina ljušture iznosi 20 mm .

MYTILUS GALLOPROVINCIALIS LAMK.

Ova euritermna i eurihalina vrsta gusto naseljava citavi obalni poןas Zaliva. Najgušće naseljava Kotorski, Risanski i Tivatski zaliv, gdje
se mjestimično na m^{2} ispitivane površine nalazi po nekoliko stotina z̃ivih jedinki ove vrste. Karakteristično je za ovu vrstu da se dobro prilagodila uslovima Života u onim djelovima Zaliva gdje su velike oscilacije u temperaturi i salinitetu kao sto je slučaj u Kotorskom i Risanskim zalivu. Tu se istodobno nalaze i najveci primjerci ove vrste.

Redovno se nalaze na tvrdom tlu, krupnom kamenju, na podvodnim stijenama i hridinama na dubini od 0,5 do 2 m . U Kotorskom i Risanskom calivu (pozicije 2, 20,36) nalaze se f na dubini od 6 do 8 m is neposrednoj blizini jakih submarinskih izvora it tu se nalaze takode u velikom broju primjeraka. Cesto se mogu naći da žive i u zoni oseke (pozicije 2, 47), gdje im boravak od nekoliko sati van vode uopšte ne smeta.

Interesantno je da se guslina, kao i broj jedinki ove vrste smanjuje iducti od Kotorskog ka Risanskom zalivu. Ta pojava je još uoçljivija kako se ide ka Tivatskom i Hercegnovskom zalivu i rtu Oštra gdje je broj jedinki ove veste najmanji u Zalivu.

Prosječna dužina ljušture iznosí oko 75 mm , a često se nalaze primjerci dugi i do 130 mm . (pozicije 20, 36).

BRACHYODONTES (MYTILASTER) MINIMUS POLI

Rasprostranjena je u velikom dijelu Bokokotorskog zaliva, ali je zastupljena relativno malim brojem jedinki. Naseljava obalni pojas, najčešce u kolonijama na tvrdoj podlozi, na stijenama ili grebenima na dubini $0,5-3 \mathrm{~m}$. Cesto se nalaze u malim udubljenjima u kamenu koje same dube, u koja se sklanjaju i pričvršćuju. I ova vrsta je zastupljena većim brojem jedinki u Kotorskom i Risanskom zalivu nego u Tivatskom i Hercegnovskom zalivu.

Prosjec̀na dužina ljušture iznosi $5-10 \mathrm{~mm}$, mada je nadeno primjeraka čija je ljuštura duga 20 mm .

MODIOLUS BARBATUS L.

Naseljava veliki dio Zaliva, ali je zastupljena u malom broju jedinki. Nadena je na muljevito-pjeskovitoj podlozi gusto obrasloj algama (Cladophora) na dubini od 30 do 40 m . Ponekada se nade, ali vrlo rijetko, i na manjim dubinama ($5-10 \mathrm{~m}$) na tvrdoj podlozi, pričvrščena za kakvu stijenu ili hridinu pomoću jakih bisusa.

Dužina ljusture iznosi 40 mm .

LITHOPHAGA LITHOPHAGA L.

Rasprostranjena je u čitavoj obalnoj zoni Bokokotorskog zaliva. Najgušce naseljava obalnu zonu na liniji Orahovac-Perast (Kotorski za-
liv), zatim Risan-Morinj (Risanski zaliv), kao i Kamenari-Igalo-rt Osstra i poluostrvo Luštica (Tivatski i Hercegnovski zaliv). Redovno se nalazi na dubini od 3 do 8 m u stijenama ili veetm odlomljenim blokovima stijena. Na takvom kamenu ili stijeni vide se spolja mali otvori, a kada se kamen razlomi u unutrašnjosti se vide pravilna cilindrična udubljenja gdje su smještene jedinke ove vrste. Obim, kao i oblik udubljenja, odgovara obliku Ijušture.

Nađeni primjerci ove vrste su dosta krupni: kod največeg nađenog primjerka ljuštura je duga 82 mm .

PTERIA HIRUNDO L.

U Bokokotorskom zalivu je ova vrsta nađena na pozicijama $1 \mathrm{~K}, 2 \mathrm{~K}$, 5K i dr. u Kotorskom i Hercegnovskom zalivu. Tesko se nalazi jer je zastupljena relativno malim brojem jedinki. Nadena je na pjeskovito--muljevitoj podlozi priěvršćena za kakav predmet (najčeśče, kakvu briozou) na dubini do 45 m .

Dužina ljušture iznosi 23 m .

AVICULA TARENTINA LAMK.

Ova vrsta je u Bokokotorskom zalivu nađena na pozicijama 3 K ; 5 K u cegnovskom zalivu na pjeskovitoj podlozi u zoni podvodnih livada na dubini od 30 do 45 m , takode pričvršćena za sesilne organizme. I za ovu vrstu se može pretpostaviti da je slabo naseljena, kao i zastupljena relativno malim brojem jedinki. Z̃ivi u manjim grupama.

Dužina ljušture iznosi 36 mm .

PINNA NOBILIS L.

Rasprostranjena je u velikom dijelu Bokokotorskog zaliva i zastupljena velikim brojem jedinki. Nađena je na pjeskovito-muljevitoj podlozi obrasloj morskim evjetnicama na dubini10-15 m. Nađena je i na majnim dubinama, ali vrlo rijetko pošto se mnogo love i zato su u plicim djelovima dobrim dijelom istrijebljene. Vrhom se zarije u mulj ili pijesak, a u neposrednoj blizini traži évrst predmet za koji se priěvrsti kao paučine tankim ali vrlo jakim bisusnim vlaknima.

Ovdje su nađene ljušture duge i do 1 m .

PINNA PECTINATA L.

Nadena je na pozicijama 2K, 21, 26, 46, 48 i 63 u Kotorskom, Tivatskom i Hercegnovskom zalivu. Zastupljena je malim brojem jedinki i
zato se dosta teško nalazi, Nadena je na pjeskovito-muljevitoj podlozi koja je obrasla morskim evjetnicama na dubini od 10 do 15 m . Vodi sličan način života kao i prethodna vrsta.

Dužina Jjušurture iznosi 280 mm .

PECTEN JACOBAEUS L.

Ova vrsta je u Bokokotorskom zalive nađena na pozicijama 3 K i 5 K u Rísanskom i Hercegnovskom zalivu. Tesko se nalazi jer je zastupljena malim brojem jedinki. Zapaža se da je u spoljas̆njem dijelu Zaliva naseljena u vetern broju jedinki, Medutim, poznato je da je u obalnom području srednjeg i južnog Jadrana, na veoma široko rasprostranjenoj pjeskovitoj podlozi, ova vrsta zastupljena relativno veéim brojem jedinki. Nađena je na pjeskovitoj podlozi koja je najčešce obrasla Zosterom i Cladophorom na dubini od 25 do 35 m .

Dužina ljušture iznosi 99 mm .

CHLAMYS (AEQUIPECTEN) OPERCULARIS L.

U Bokokotorskom zalivu je ova vrsta nađena na pozicijama $4 \mathrm{~K}, 5 \mathrm{~K}$ i 9 K u prodoru Veriga i u Hercegnovskom zalivu. Teško se nalazi jer je zastupljena malim brojem jedinki. Nađena je na pjeskovito-muljevitoj podlozi na dubini do 40 m . Ponekada se mogu naél i na manjoj dubini, ali su tada vrlo rijetke.

Dužina ljušture iznosi 35 mm .

CHLAMYS VARIA L.

Rasprostranjena je po čitavom Bokokotorskom zalivu i zastupljena je u velikom broju jedinki. Skoro u svakom potezu povlačnom mrežom ($12-18$), dredom ($5-8$) ili Petersen-ovim grabilom ($1-2$) nadu se brojno zastupljene jedinke ove vrste. Karakteristično je da su od pronađenih svih primjeraka ove vrste 96% bile žive. Nađene su na pjeskovito-muljevitoj podlozi na raznim dubinama ($5-40 \mathrm{~m}$).

Dužina ljušture iznosi 41 mm .

CHLAMYS GLABRA L.

U dosadašnjim istraživanjima ova vrsta je nađena na pozicijama $8 \mathrm{~K}, 9 \mathrm{~K}, 86,75,79$ i 82 i to isključivo u Hercegnovskom zalivu. Ova vrsta je rijetko naseljena i zastupljena je malim brojem jedinki. Najviše se javlja u jugoistočnom dijelu Hercegnovskog zaliva, odnosno u obalnoj
zoni poluostrva Luštice. Nađena je na pjeskovitoj podlozi na dubini do 35 m .

Dužina ljušture iznosi 45 mm .

SPONDYLUS GAEDEROPUS L.

Rasprostranjena je skoro u čitavom Bokokotorskom zalivu. U Kotorskom i Risanskom zalivu zastupljena je u većem broju jedinki u odnosu na spoljašnji dio Zaliva. Najčešée se nalaze pojedinačno, mada su u Kotorskom zalivu nađene i u manjim grupicama, Mogu se naḱi pričvršćene za kakav predmet, a vrlo se cesto nalaze i na pjeskovito-sljunkovitoj podlozi obrasloj morskim cvjetnicama pričvršcene za kakav koral ili neki predmet. Nađene su na dubini do 30 m .

Dužina ljušture iznosi 80 mm .

LIMA LIMA L.

Ova vrsta je u Bokokotorskom zalivu nađena na pozicijama 45, 63 , 67, 74 i 77 u prodoru Verige i u Hercegnovskom zalivu. Nađen je mali broj primjeraka (9) u obalnoj zoni na dubini do 20 m , na hridinastoj podlozi za koju je priěvršćcna bisusom.

Dužina ljušture iznosi 42 mm .

LIMA HIANS GMEL.

U Bokokotorskom zalivu je ova vrsta nađens na poziciji 86 u Hercegnovskom zalivu. Nadena su svega dva primjerka ove vrste na dubini od 53 m na čvrstoj podlozi. Dosadašnja istraižvanja ukazuju da se ova vrsta nalazi samo na početnom dijelu Bokokotorskog zaliva, a da u ostalim djelovima nije ni naseljena.

Dužina ljušture iznosi 28 mm .

ANOMIA EPHIPPIUM L.

Rasprostranjena je po citavom Bokokotorskom zalivu, mada pretežno u obalnom pojasu. Nađena je na čvrstom dnu, kakvom kamenu ili priêvrščena za kakav drugi čvrsti predmet, a najčešće se nalazi pričvršそena na drugim školjkaşima kao npr, na kamenicama, dagnjama i sl. Nađđene su u velikom broju primjeraka što ukazuje na to da je u Bokokotorskom zalivu ova vrsta zastupljena u relativno velikom broju jedinki.

Dužina ljušture iznosi 13 mm .

OSTREA EDULIS L.

Ova vrsta je u Bokokotorskom zalivu nađena na pozicijama $2 \mathrm{~K}, 3 \mathrm{~K}$, 5 K i dr. Rasprostranjena je u čitavom Zalivu, mada se nigdje ne javlja u vecem broju primjeraka. Najveći broj jedinki naden je na pozicijama 20,57 i 59 , i to grupisanih u velikom broju. Na m' ispitivane povrsine na tim pozicijama nađeno je $50-60$ zivih jedinki ove vrste. Na ostalim pozicijama se javljaju pojedinačno i u malom broju jedinki.

Zivi na čvrstoj podlozi, najčešće pričvršcéna za kakav kamen ili stijenu na dubini od 1 do 10 m uz samu obalu. Karakteristično je da u Kotorskom i Risanskom zalivu živi na dubini od 4 do 10 m dok se u Tivatskom i Hercegnovskom zalivu redovno nalaze na manjim dubinama, i to od 0,80 do 3 m . Na ovakvu vertikalnu distribuciju ove vrste u Zalivu je, svakako, uticao salinitet morske vode, tj. zbog smanjenog saliniteta u Kotorskom i Risanskom zalivu jedinke ove vrste su se selektivno povukle u dublje slojeve gdje se u tolikoj mjeri ne osjećaju te oscilacije, ili su, pak, podnošljivije.

Prosječna dužina je 70 mm , a največi primjerak je dug 125 mm .

LSOCARDIA COR L.

Nađena je u Kotorskom, Risanskom i Hercegnovskom zalivu (p. 2 K , $3 \mathrm{~K}, 5 \mathrm{~K}$) na muljevito-pjeskovitoj podlozi u zoni podvodnih livada na dubini od 20 do 25 m . Slabo je rasprostranjena i zastupljena je malim brojem jedinki.

Dužina 1 juš̌ture iznosi 52 mm .

DIV ARICELLA DIVARICATA L.

Dosadašnja istraživanja ukazuju da je ova vrsta rijetko naseljena u Bokokotorskom zalivu i da je zastupljena relativno malim brojem jedinki. Do sada je samo nađena na pozieiji 4 K u tjesnacu Verige na muljevitoj podlozi na dubini od 20 do 28 m .

Dužina ljuşture iznosi 10 mm .

LORIPES LACTEUS L.

U Bokokotorskom zalivu je ova vrsta nadena na pozicijama 5 K i 6 K u Tivatskom i Hercegnovskom zalivu na muljevito-pjeskovitoj podlozi djelimiěno obrasloj morskim cvjetnicama na dubini do 30 m . Kao što su pokazala dosadašnja istraživanja ova vrsta je dosta slabo rasprostranjena u Zalivu, ali je karakteristično da je, na pozicijama gdje je nađena, zastupljena u relativno velikom broju jedinki.

Dužina ljušture iznosi 18 mm .

CHAMA GRYPHINA LAMM.

Da sada je ova vrsta nadena samo u prodoru Verige (p. 42, 43 i 44). I ova vrsta je slabo rasprostranjena i zastupljena malim brojem jedinki. Nadeno je svega 5 primjeraka ove vrste na dubini do 15 m pričvrścenih za kakvu stijenu ili hridinu.

Dužina ljušture iznosi 33 mm .

CHAMA LAMELLOSA LAMK.

Ova vrsta je u Bokokotorskom zalivu nadena na poziciji 41 u tjesnacu Verige. Najčešće žive pričvršbene za stijene ili u udubljenjima stijena od kojih i zavisi i oblik njihove ljušture. Nađena je na dubini od 5 do 15 m na tvrdoj podlozi. Slabo je rasprostranjena u Zalivu i zastupljena je malim brojem jedinki .

Dužina ljušture iznosi 33 mm .

CARDIUM EDULE L.

Rasprostranjena je po čitavom Bokokotorskom zalivu i zastupljena relativno velikim brojem jedinki. Lako se nalazi, i to naročito prazne ljušture u plićacima na ravnoj podlozi. Nađene su pretežno na pjeskovitoj podlozi na dubini do $35 \mathrm{~m} . \mathrm{Na} \mathrm{m}^{2}$ ispitivane površine nadeno je 7 jedinki ove vrste.

Dužina ljušture iznosi 44 mm .

CARDIUM TUBERCULATUM L.

Ova vrsta je rasprostranjena po citavom Bokokotorskom zalivu 1 zastupljena je relativno velikim brojem jedinki. Nadena je na pjeskovito--muljevitoj podlozi medu algama i morskim evjetnicama na raznim dubinama ($4-35 \mathrm{~m}$), mada se najčešée nalazi na manjoj dubini gdje je voda najbogatija kiseonikom. Dosadašnja istraživanja su pokazala da ova vrsta dobro podnosi promjene u salinitetu morske vode i zato se često nađe na mjestima gdje se miješaju slatka i slana voda u blizini kakvog submarinskog izvora.

Dužina ljušture iznosi 57 mm .

CARDIUM PAUCICOSTATUM SOWERBY

U Bokokotorskom zalivu je ova vrsta nađena na pozicijama $1 \mathrm{~K}, 2 \mathrm{~K}$, $3 \mathrm{~K}, 4 \mathrm{~K}, 5 \mathrm{~K}, 6 \mathrm{~K}, 8 \mathrm{~K}$ i dr. što ukazuje na to da je vrlo rasprostranjena; zastupljena je velikim brojem jedinki. Na m^{2} ispitivane povrsine とesto se
nalazi i do 10 jedinki ove vrste. I u obalnom području srednjeg Jadrana, kao i u kanalima i zalivima, ova vrsta je, takode, rasprostranjena i zastupljena velikim brojem jedinki. Redovno se nalazi na muljevitoj podlozi na dubini od 10 do 40 m .

Dužina ljušture iznosi 33 mm .

CARDIUM EXIGUUM GMEL.

Ova vrsta je rasprostranjena u velikom dijelu Zaliva, mada je zastupljena malim brojem jedinki, Nađena je na muljevitoj podlozi na dubini do 35 m .

Dužina ljušture iznosi 25 mm .

CARDIUM ECHINATUM L.

U dosadašnjim istraživanjima je ova vrsta nađena na pozicijama 2 K , $9 \mathrm{~K}, 17,26,83$ i 84 u Kotorskom i Hercegnovskom zalivu; ona su pokazala da je ova vrsta slabo rasprostranjena i zastupljena relativno malim brojem jedinki. Nadena je na pjeskovito-muljevitoj podlozi, kao i pjeskovitoj koja je djelimično obrasla morskim cvjetnicama na dubini od 20 do 45 m .

Dužina 1 jušture iznosi 40 mm .

LAEVICARDIUM OBLONGUM GMEL.

U Bokokotorskom zalivu je ova vrsta nađena na poziciji 9 K u Hercegnovskom zalivu, i to na pjeskovitoj podlozi, djelimično obrasloj morskim evjetnicama, na dubini od 25 do 50 m . Nađen je samo jedan primjerak ove vrste što ukazuje na slabu rasprostranjenost i zastupljenost malim brojem jedinki. Isto tako poznato je, na osnovu dosadas̆njeg proučavanja distribucije ove vrste na pjeskovitom priobalnom dnu srednjeg, a djelimiěno i južnog Jadrana, da se ona javlja rijetko i u malom broju jedinki.

Dužina ljušture iznosi 35 mm .

PITAR RUDIS POLI

Do sada je nađena samo na poziciji 1 K u Kotorskom zalivu. Nadena su svega tri primjerka ove vrste na pjeskovito-muljevitoj podlozi na dubini od 15 do 25 m . Podloga, na kojoj je nađena ova vrsta, dobrim dijelom je obrasla morskim evjetnicama. Sve ovo ukazuje na slabu rasprostranjenost malim brojem jedinki u Zalivu.

Dužina ljušture iznosi 13 mm ,

DOSINIA LUPINA L.

Ova vrsta je u Bokokotorskom zalivu nađena na pozicijama $1 \mathrm{~K}, 2 \mathrm{~K}$, 3 K i 4 K u Kotorskom i Risanskom zalivu, kao i u prodoru Veriga. Karakteristiěno je da se ova vrsta na naznačenim pozicijama javlja u relativno znatnom broju jedinki. Nadena je na muljevitoj podlozi na dubini od 20 do 30 m .

Dužina ljušture iznosi 18 mm .

VENUS VERRUCOSA L.

Rasprostranjena je skoro u citavoj obalnoj zoni Bolkokotorskog zaliva. U vecem broju jedinki ova vrsta se nalazi u unutraŝnjem dijelu Zaliva, a najveća gustina je zapažena u istočnom dijelu Kotorskog zaliva. Dosadašnja istraživanja su pokazala da, kako se ide ka Tivatskom i Hercegnovskom zalivu, gustina i broj jedinki ove vrste bivaju sve manji. Redovno se nalazi na pjeskovitoj podlozi, a često i na pjeskovito-muljevitoj, koja je djelimično obrasla morskim evjetnicama. Zive na dubini od 8 do 20 m .

Nađeni primjerci su dosta krupni tako da prosječna dužina ljušture iznosi 52 mm .

VENUS (CHIONE) GALLINA L.

Rasprostranjena je u većem dijelu Bokokotorskog zaliva. Za razliku od prethodne vrste ova je zastupljena malim brojem jedinki i zato se vrlo teško nalazi. Nadeno je svega 12 primjeraka ove vrste pretežno na pjeskovitoj podlozi, a mjestimično i sa znatnim primjesama mulja, na dubini od 5 do 15 m .

Dužina ljušture iznosi 34 mm .

VENUS FASCIATA DONOV.

Do sada je naden samo jedan primjerak ove vrste na poziciji 16 u Kotorskom zalivu. Nađena je na pjeskovitoj podlozi na dubini od 6 m .

Dužina ljušture iznosi 13 mm .

VENERUPIS DECUSSATA L.

Rasprostranjena je u obalnoj zoni skoro čitavog Bokokotorskog zaliva. Posebno gusto naseljava pjeskovita područja obalne zone. Na istraživanim pozicijama nađeno je prosječno do 5 živih jedinki na m^{2}. Na nekim lokalitetima, kao npr, na pozicijama 13, 16 i 18 u Kotorskom zalivu nađeno je $18-20$ jedinki na m^{2}, ali su tu $60^{\circ} \%$ jedinki bile mrtve (prazne
ljušture). Redovno se nalaze na pjeskovitoj podlozi, mada se često nađu i na pjeskovito-muljevitoj podlozi u zoni podvodnih livada na raznim dubinama ($5-25 \mathrm{~m}$). Prazne ljušture se nalaze na samoj obalf u pijesku. Zapaža se da se i u okviru ove vrste javljaju razni varijeteti i podvarijeteti.

Dužina ljušture iznosi 57 mm .

VENERUPIS AUREUS GMEL.

U Bokokotorskom zalivu je ova vrsta nađena na pozicij: 4 K u tjesnacu Verige, dok na ostalim istraživanim pozicijama nije nađena. Nadena je na muljeviloj podlozi na dubini od 20 do 28 m . Kao sto su pokazala dosadašnja istraživanja i za ovu vrstu se može konstatovati da je slabo rasprostranjena i zastupljena malim brojem jedinki. Teško se nalazi i do sada je nadeno svega 6 primjeraka ove vrste.

Dužina ljušture iznosi 15 mm .

IRUS IRUS L.

Ova vrsta je u Bokokotorskom zalivu nadena na poziciji 4 K u tjesnacu Verige. Nadena su tri primjerka ove viste na dubini od 24 m na muljevito-pjeskovitoj podlozi. Svi nadeni primjerci bile su prazne ljuşture. Teško se nalazi jer je slabo naseljena 1 zastupljena malim brojem jedinki.

Dužina ljušture iznosi 18 mm .

MACTRA CORALLINA L.

Rasprostranjona je u velikom dijelu Bokokotorskog zaliva, mada se u najvećem broju jedinki javlja u Kotorskom i Risanskom zalivu. Tu se na poziciji 16 (28. X 1963.) u jednom zahvatu Petersen-ovim grabilom naşlo 12 jedinki ove vrste. Karakteristično je da se broj jedinki ove vrste osjetno smanjuje kako se ide ka Tivatskom i Hercegnovskom zalivu i dalje prema otvorenom moru. Nadene su na pjeskovitoj i pjeskovito-muljevitoj podlozi na dubini od 8 do 25 m . Takode su nadene, i to grupisane, na pjeskovitoj podlozi u blizini submarinskih Izvora (p. 16, 18). Prazne ljus̆ture se nalaze u plićacima ($1-2 \mathrm{~m}$) izmijeSane sa pijeskom gdje su ih struje i talasi izbacili.

Dužina ljušture iznosi 48 mm .

DONACILLA CORNEA POLI

U Bokokotorskom zalive je ova vrsta madena na pozicijama 2 K i 4 K u Kotorskom zalivu i tjesnacu Verige. Slabo je rasprostranjena u Zalivu
i zastupljena relativno malim brojem jedinki. Nađena je na muljevitoj podlozi na dubini od 22 do 30 m .

Dužina ljušture iznosi 21 mm .

PSAMMOBIA DEPRESSA PENNANT

U dosadašnjim istraživanjima ova vrsta je nađena na pozicijama $1 \mathrm{~K}, 2 \mathrm{~K}, 3 \mathrm{~K} \ddagger \mathrm{dr}$. u Kotorskom \ddagger Risanskom zalivu it tu je zastupljena u relativno velikom broju jedinki, Najbrojnije je zastupljena u Kotorskom zalivu, a u Risanskom zalivu se nalazi nessto u manjem broju, dok u Tivatskom i Fiercegnovskom zalivu do sada ove vrsta nije nađena. Cesto se nalaze u blizini submarinskih izvora (pozicije 16 i 18) i tu su nađene u najvecem broju primjeraka. Uglavnom se nalaze na pjeskovitoj i pjesko-vito-muljevitoj podlozi na raznim dubinama ($10-30 \mathrm{~m}$).

Dužina ljušture iznosi 52 mm .

SOLENOCURTUS PELUCIDUS L.

Ova vrsta je u Bokokotorskom zalivu nadena na pozicijama $1 \mathrm{~K}, 3 \mathrm{~K}$ i 4K u Kotorskom i Risanskom zalivu i u prodoru Verige. U dosadašnjim istraživanjima ova vrsta nije nađena u spoljašnjem dijelu Zaliva, što govori o slaboj rasprostranjenosti ove vrste. I u unutrašnjem dijelu Zaliva zastupljena je relativno malim brojem jedinki. Nadeno je svega 9 primjeraka ove vrste na muljevito-pjeskovitoj i cisto muljevitoj podlozi koja je djelimično obrasla morskim cvjetnicama na dubini od 10 do 30 m .

Dužina 1jušture iznosi 29 mm .

SCROBICULARIA PLANA DA COSTA

U Bokokotorskom zalivu je ova vrsta nađena na pozicijama 13,15 , 16, 18, 34 i 46 u Kotorskom, Risanskom i Tivatskom zalivu. U spoljaśnjem dijelu Zaliva ova vrsta je rijetko naseljena i zastupljena je relalivno malim brojem jedinki. U unutrašnjem dijelu Zaliva ova vrsta je nađena na većem broju pozicija i u većem broju primjeraka. Nađena je na muljevitoj podlozi u blizini obale gdje se mijeŠaju slatka i slana voda na dubini od 5 do 15 m . Prazne ljušture se mogu nací i na nanjoj dubini u pijesku ili mulju.

Dužina ljušture iznosi 43 mm .

TELLINA DISTORATA POLI

Do sada je ova vrsta nađena samo u Hercegnovskom zalivu na pozicijama 86 i 71. Nadeno je svega 7 primjeraka ove viste na pjeskovitoj
i muljevitoj podlozi na raznim dubinama ($10-20 \mathrm{~m}$.). Na ostalim pozicijama nije nadena što ukazuje na to da je ova vrsta slabo naseljena I zastupljena malim brojem jedinki. Moglo bi se pretpostaviti da je ova vrsta samo naseljena u Hercegnovskom zalivu i da je u ostalim djelovima Zaliva i nema.

Nadeni primjerci su dosta sitni i ni jedan ne prelazi dužinu od 7 mm .

TELLINA PULCHELLA LAMK.

Ova vrsta je u Bokokotorskom zalivu nađena na poziciji 86 u Hercegnovskom zalivu. I za ovu vrstu se može pretpostaviti, na šta ukazuju dosadašnja istraživanja, da jedino naseljava Hercegnovski zaliv, i to njegov početni dio, odnosno sami ulaz u Bokokotorski zaliv. Nadeno je svega 6 primjeraka ove vrste, što posebno govori o slaboj rasprostranjenosti i zastupljenosti relativno malim brojem jedinki. Zive na pjeskovitoj podlozi na raznim dubinama ($4-15 \mathrm{~m}$).

Dužina ljušture iznosi 12 mm .

TELLINA SP.

U Bokokotorskom zalivu je ova vrsta nadena na pozicijama $1 \mathrm{~K}, 8 \mathrm{~K}$ i 9 K u Kotorskom i Hercegnovskom zalivu. Nađena je u malom broju primjeraka, i to na pjeskovito-muljevitoj, a i čisto pjeskovitoj podlozi na dubini od 20 do 40 m .

Dužina ljušture iznosi 13 mm .

SOLEN VAGINA L.

Rasprostranjena je u vecem dijelu Bokokotorskog zaliva. Tes̉ko se nalazi jer je zastupljena relativno malim brojem jedinki. Nađena je svega 15 primjeraka ove vrste na raznim dubinama ($2-15 \mathrm{~m}$). Zivi u muljevitoj ili pjeskovitoj podlozi zarivena u nju. Nalazi se i u lagunama blizu ušca potoka i rijeka (p.34). Bokokotorski zaliv je gusto naseljen Asteroidea-ma i Ophiurided-ma, a poznato je da se ove vrste hrane raznim školjkašima, prvenstveno ovom vrstom pošto je lako savlađuju, i može se sa sigurnošéu pretpostaviti da je to jedan od glavnih uzroka ovako malom broju jedinki ove vrste u Zalivu.

Dužina ljušture iznosi 98 mm .

PHARUS LEGUMEN L.

U Bokokotorskom zalivu je ova vrsta dosta siroko rasprostranjena, mada se nigdje ne javlja u velikom broju. Nadena je u Risanskom, Tivatskom i Hercegnovskom zalivu, kao i u tjesnacu Verige (pozicije 3 K ,
$4 \mathrm{~K}, 5 \mathrm{~K}, 7 \mathrm{~K}$ i 9 K). Nadena je na pjeskovito-muljevitoj podlozi na dubinama od 25 do 50 m .

Dužina ljušture iznosi 65 mm .

HIATELLA RUGOSA L.

Ova vrsta je nađena u većem dijelu Bokokotorskog zaliva, mada se tcško nalazi jer je zastupljena relativno malim brojem jedinki. Nadena je na dubini od 5 do 20 m . u obalnom pojasu u stijenuma ili kakvom povećem kamenu. Potpuno su uronjene u kamenu I preleo ovalnih otvora komuniciraju sa spoljašnjom sredinom.

Dužina 1 jušture iznosi 14 mm .

HIATELLA ARCTICA L.

Do sada je ova vrsta nađena na pozicijama 4 K i 5 K u tjesnacu Verige i Hercegnovskom zalivu. Rijetko je naseljena i zastupljena malim brojem jedinki i zato se teško nalazi. Nadena je na raznim dubinama ($20-30 \mathrm{~m}$).

Dužina ljušture iznosi 13 mm .

ALOIDIS GIBBA OLIVI

Rasprostranjena je u svim djelovima Bokokotorskog zaliva i nalazi se u velikom broju jedinki. Nadena jo na muljevito-pjeskovitoj podlozi na dubinama od 20 do 50 m , što znači da uglavnom naseljava dno Zaliva.

Pronadene jedinke su dosta sitne i ni jedna ne prelazi dužinu od 8 mm .

TEREDO NAVALIS L.

Ova vrsta je rasprostranjena u čitavom Bokokotorskom zalivu a najviše u obalnom pojasu na raznim dubinama, gdje živi u hodnicima koje dubi u drvetu. Zastupljena je u velikom broju jedinki i redovno se nalazi na dubinama od 1 do 20 m . Naročito se mnogo namnokila u onim djelovima gdje se tokom čitave godine stalno miješaju slana i slatka voda (p. 2) i tu se javlja u najvećem broju jedinki.

THRACIA COMBULORDEA DE BL.

U Bokokotorskom zalivu je ova vrsta nadena na poziciji 1 K u Kotorskom zalivu. Naden je jedan primjerak ove vrste na muljevito-pjeskovitoj podlozi obrasloj zosterom na raznim dubinama ($15-25 \mathrm{~m}$). Na dru-
gim mjestima u Zalivu nije nadena, şto ukazuje na to da je slabo rasprostranjena i zastupljena relativno malim brojem jedinki.

Dužina ljušture iznosi 56 mm .

THRACIA SP.

U dosadašnjim istraživanjima i ova vrsta je nađena na pozicijama 1K i 14 u Kotorskom zalivu. Nadeno je 5 primjeraka ove vrste na muljevitoj podlozi, koja je djelimiěno obrasla zosterom na dubini od 20 m .

Dužina ljušture iznosi 20 mm .

CUSPIDARIA (NEAERA) CUSPIDATA OLIVI

Ova vrsta je u Bokokotorskom zalivu nadena na pozicijama 1K i 3K u Kotorskom i Risanskom zalivu i tu se javlja u relativno malom broju jedinki. Nađena je na muljevitoj podlozi na dubini od 30 m .

Dužina ljušture iznosi 6 mm .

SEPIA OFFICINALIS L.

Rasprostranjena je u citavom Bokokotorskom zalivu. Redovno se lovi i nalazi u svim djelovima Zaliva, a najčešće na pozicijama $1 \mathrm{~K}, 2 \mathrm{~K}$, $3 \mathrm{~K}, 5 \mathrm{~K}, 6 \mathrm{~K}$ i 9 K . Zastupljena je u Zalivu relativno velikim brojem jedinki.

Najveći dio godine provodi na muljevitom dnu i tada se teško lovi (tada se najuspješnije lovi pomoću povlačne mreže-koče). Muljevito dno napušta vec u martu, ako je toplije, radi polaganja jaja. Njih polaže u blizini obale, među algama, gdje je sloj vode tanak i brzo se zagrijava

Ova vrsta ne prelazi dužinu od 30 cm , dok je prosjek ulovljenih jedinki 15 cm , a težina 100 gr .

SEPIA ELEGANS D'ORB.

I ova vrsta je rasprostranjena u svim djelovima Bokokotorskog zaliva, mada se najveći broj jedinki lovi na pozicijama $2 \mathrm{~K}, 3 \mathrm{~K}$ i 6 K . Za razliku od prethodne vrste ova je zastupljena relativno manjim brojem jedinki i teže se lovi.

Z̃ivi na muljevitom dnu koje napušta krajem aprila radi polaganja јаја.

Jedinke ove vrste ne prelaze dužinu od 25 cm , dok je prosjek ulovljenih jedinki 17 cm , a tě̌ina 90 gr .

SEPIOLA RONDELETII LEACH.

U Bokokotorskom zalivu je ova vrsta nadena u relativno malom broju jedinki na pozicijama 2K i 6K u Kotorskom i Tivatskom zalivu. Vrlo se teško lovi jer pretežno żivi na dnu. Ponekada se love u obalnoj zoni na dubini do 10 m . Posebno se teskko love i pronalnze u periodu okto-bar-mart, kada se i ove obalne spuštaju u vece dubine.

Nađena su svega tri primjerka ove vxste ini jedan ne prelazi duzinus od 60 mm , dok je prosjels ulovljenih. jedinka 52 mm .

SEPIOLA OWENIANA DORB.

Ova vrsta je slabo rasprostranjena ur Bokolotorekom zalivu i zastupljena je relativno malim brojem jedinki. U dosadašnjim istraživanjima je nađena samo na poziciji 6 K u Tivalskom zalivu. Vrlo se tesklko lovi zbog malog broja jedinki, kao i zbog toga şto uglavnom zzivi na muljevitom dnu Zaliva koje vrlo rijetko napussta.

Ulovljen je samo jedan primjerak ove vrste čija dužina iznosi 45 mm .

SEPIOLA PETERSII STSTRP.

Kao i prethodna, i ova vrsta je ur Bokokotorskom zalivu slabo naseljena i zastupljena relativno malim brojem jedinki. Ulovljena je na pozicijama 5 K i 8 K u Hercegnovskom zalivu. Zivi pri samom dnu, što posebno otežava njihov ulov. I kod ove vrste ulovljen je samo jedan primjerak čija dužina iznosi 48 mm .

LOLIGO VULGARIS LAMK.

Ova vrsta je rasprostranjena u citavom Bokoketorskom zalivu i zastupljena je u relativno velikom broju jedinki.

U Zalivu se lovi tokom citave godine, a naročito za vrijeme velikih hladnoéa i vjetrova kada se približava obali u potjeri za ribom. Za razliku od prethodnih opisanih glavonožace, ovej glavonožac je neprekidno ur pokretu te se često može vidjeti uz samu obalu, u plićacima, gdje se éesto i hvata.

Živi u jatima, i to, po pravilu, sitni su uvijek bliže površini, a krupniji znatno dublje. To se naročito može pratiti za vrijeme noćnog žeženja, kada je voda u Zalivu mirna. (Vrlo su interesantni spisi americkog biologga Verrill-a koji opisuje čudnovato imjesečarenje= ovog glavonos̄ca; opazili su ga na americkim obalama u vrijeme punog mjeseca. Tada se ulignji okupljaju u velika jata 1 brzo plivaju pučinom "preman punom mjesect. Pri tome se često dešava da ih se na hiljade nasuče na obale i ugine).

Največa dužina ulovljenog primjerka iznosil 25 cm , dok je prosječna
 love testre od 50 do 100 gr dok nije rijetkoit da talove I preko 3 kg , dugaçke i do 50 cm .

TODARODES SP.

Neodredenu vrstu ovog roda ulovio je dr V. Lepeté (1964.) i podatke objavio u aStudia Marinae 1, 1965. godine. Cjelokupna dosadas̀nja istrazivanja navode na pretpostavku da je ovaj glavonožac u Zalivu vrlo slabo rasprostranjen i zastupljen malim brojem jedinki. Za vrijeme nasih istraživanja nije ulovljen. Nije se uspjelo odrediti pripadnost vrste, mada mnogo podsjeća na T. sagiltatus STSTRP.

OCTOPUS VULGARIS LAMK.

U Bokokotorskom zalivu je ova vrsta rasprostranjena dosta slabo i zastupljena relativno malim brojem jedinki. Ulovljena su samo dva primjerka na poricijama 8 K i 9 K u Fercegnovskom zalivu. Može se pretpostaviti da je ovako slaboj rasprostranjenosti ove vrste u Bokokotorskom zalivu jedan od uzroka taj şto nema mnogo podvodnih pecina i razudenih hridina, koje su njeno ćesto prebivalište. Tome se mogu dodati i znatne promjene u salinitetu, naročito za vrijeme jesenje i zimske periode, što, moz̃e se pretpostaviti, utiče na rasprostranjenost ove vrste u Zalivu.

Naprotiv, poznato je da je ova vrsta u južnom Jadranu zastupljena velikim brojem jedinki. Brojne podvodne pecine, udubljenja u stijenama, razudene hridine i grebeni jesu najceséca prebivališta ovog glavonošca. Tu se često može susresti i na siljunkovitom I pjeskovitom đnu po kojemu se lagano kreće.

Dư̌ina veçeg ulovljenog primjerka iznosí 25 cm , a težina 500 gr .
Najveći ulovljeni glavonožac ove vrste a Bokokotorskom zalivu rijetiko prelazi $75-80 \mathrm{~cm}$ dužinc. Najǵeşce ulovljeni primjerci su dužine od 25 do 35 cm i teski su $500-1000 \mathrm{gr}$. U Zalivu se uglavnom love na većoj dubini ($30-50 \mathrm{~m}$), jer se ova vrsta rijetko približava obali. Najveć broj jedinki ove vrste zapažen je u jugoistoénom dijelu. Hercegnovskog zaliva.

ELEDONE MOSCHATA LEACH.

Ova vrsta je rasprostranjena u svim djelovima Bokokotorskog zaliva, mada je zastupljena malim brojem jedinki. U jednom potezu povlačnom mrežom redovno se nalaze 1-2 jedinke ove vrste. Zive na dubini od 10 do .50 m , mada se najčešce love na dubini od 10 do 15 m , i to na
pješčanim sprudovima Bokokotorskog zaliva, na mjestima na kojima ribari izvlače mreže, jer tu uvijek nalaze dosta hrane,

Ni jedan od ulovljenih primjeraka ne prelazi dužinu od 20 cm i težinu od 110 gr .

VI DISKUSIJA

S obzirom na to da ranije niljesú vrsiena nilkakva istrazivanja Mollusca Bokakotorskog zaliva, a, kollko mi je poznato, nì u srednjem i južnom Jadranu, a vrlo malo i u sjevernom Jadranu, to smo postavili kao osnovni zadatak: otkriti i pronaći makro-Mollusca, registrovati njihova nalazišta i po moguénosti njihovu rasprostranjenost. Znaci da tu početku ovih istraživanja nijesmo imali nikakvih orijentacija sto je uslovilo da ova istreživanja traju pune 4 godine (od maja 1961. do avgusta 1965.). U početnoj fazi istraživanja (maj 1961. - maj 1963.) odredeno je 86 pozicija ravnomjerno rasporedenih po citavom Bokokotorskom zalivu na kojima su se istraživanja vršila uz pomoć ronjenja (od Ratne mornarice posuđ̃ena je kompletna oprema) i Petersen-ovog grabila-bagera ($1 / 5 \mathrm{~m}^{2}$). U drugoj fazi istraživanja (V 1963. - V 1965.) smanjen je broj pozicija sa 86 na 63 , a u cilju boljeg i potpunijeg pronalaženja makro-Mollusca u Zalivu je postavljeno novih 9 pozicija (P 1K-9K) na kojima se vukla povlačna mre-z̀a-koča a, radi komparacije i potpunijeg sagledavanja, i dreda, (Koča je vučena 1 sat brzinom od 2,5 milje na sat, a dreda 10 minuta brzinom od 2,5 milje na sat).

Tako je osnovni cilj ovog rada faunističko-sistematski, prilikom postavljanja ovih istraživanja smatrali smo za potrebne unekoliko obuhvatitl neke osnovne abiotske faktore, kao: temperaturu, salinitet i providnost morske vode. Ovo iz razloga sto bi ovi faktori mogli imati uticaja na rasprostranjenost pojedinih vrsta Mollusca u Zalivu, u toku samih istraŽivanja omoguciti bolju orijentaciju i na kraju dati kompletniju sliku o kvalitativnom sastavu makro-Mollusca Bokokotorskog zaliva. Baš zato je ovaj dio istraživanja prikazan u tabelarnim pregledima i ima posebno mjesto u ovom radu.

U toku istraživanja zapaženo je da postoji zavisnost kvalitativne i kvantitativne distribucije makro-Mollusca u odnosu na podlogu i, 5 druge strane, u odnosu na temperaturu i salinitet. Pošto to nije bio zadatak ovog istriživanja, i pošto to zahtijeva posebnu studiju, to ovom prilikom samo uzgred registrujemo tu zavisnost, ali i ne stepen te zavisnosti.

Sama analiza temperature i saliniteta najbolje pokazuje koliko je jako djelovanje, velikim dijelom godine ($\mathrm{X}-\mathrm{V}$), kopnenih voda u Bokokotorskom zalivu. Kao sto se i realno moglo oćekivati, maksimalne vrijednosti temperature i saliniteta po svim slojevima zapažene su u spoljašnjem dijelu Zaliva, s obzirom na to da je u tom dijelu Zaliva priliv

Eopnenih voda minimalan, a, 5 druge strane, jak uticaj čiste jadranske vode. Nasuprot tome minimum slanosti I lemperature, kao i velike oscilacije u: temperaturi i seliniteto it suim slofevima, konstatovani su u Kotorskom i Risanskom zalivu, gdje je uticaj ciste jadranske vode daleko manji, a priliv kopnenih voda velik.

VII ZAKLJUCAK

Ovim istraživanjima je data prva livalitativna slika i sistematski pregled makro-Mollusca u Bokokotorslom zalivu. Obrađeno je 138 vrsta Mollusca koji su u ovom periodu istražvanja pronađeni. Od toga ofpada na Gastropode 62 vrste, Amphinetra 1 vrsta, Scuphopoda 2 vrste, Bivalvia 64 vrste i Cephalopoda 9 vrsta. Kao što se vidi, makro-Mollusca su zastupljeni u Bokokotorskom zalivu znatnim brojem vrsta, gdje osjetno preovlađuju Gastropodi i Bivalvi.

Takode je konstatovano da je od 62 vrste Gastropoda 30 vrsta rasprostranjeno u citavom Bokokotorskom zalivu, 24 vrste su samo nađene u Hercegnovskom (od čega su 2 vrste zastupljene u Tivatskom zalivu), 2 vrste su samo nadene u Risanskom (od čega je jedna vrsta zastupljena i u prodoru Verige) i 6 vrsta je nađeno u Kotorskom zalivu (od čega je jedna vrsia nađena jos̃ i u Risanskom zalivu). Jedina jedna vrsta klase Amphineura nađena je samo u Hercegnovskom zalivu. Od dvije vrste Seaphopoda jedna je rasprostranjena u čitavom Bokokotorskom zalivu.

Od ukupno 64 vrste Bivalvia 34 vrste su rasprostranjene u čitavom Bokokotorskom zalivu, 15 vrsta je nađeno samo u Hercegnovskom zalivu (od čega je jedna vrsta zastupljena joŝ u Tivatskom, jedna u prodoru Verige, a jedna u Kotorskom zalivu), 5 vrsta je nađeno samo u prodoru Verige, 10 vrsta je zastupljeno samo u Kotorskom zalivu (od cega je 5 vrsta nadeno još u Risanskom zalivu i 3 vrste u tjesnacu Verige). Od ukupno nađenih 9 vrsla Cephalopodn, 5 je vrsta rasprostranjeno u čitavom Bokokotorskom zalivu, dok su 4 vrste do sada nađene samo u spoljašnjem dijelut Bokokotorskog zaliva, i to pretežno u Hercegnovskom zalivu.

Znači da od ukupno 138 vrsta makro-Mollusea, koliko ih je do sada nadeno it Bokokotorskom zalivu, 71 vrsta je rasprostranjena u čitavom Bokokotorskom zalivu, 44 vrste su nadene u Hercegnovskom zalivu (od Čega su 4 vrste zastupljene još i u Tivatskom zalivu, 1 u Kotorskom 11 u tjesnacu Verige), 5 vrsta je samo nadeno do sada u tjesnacu Verige, 2 vrste su do sada nađene u Risanskom zalivu (od cega je jedna vrsta zastupljena jost i u prodoru Verige) il6 vrsta je do sada nađeno u Kotorskom zalivu (od čega je 6 vrsta još nadeno u Risanskom zalivu i 4 vrste u prodoru Verige).

Zbog svog specifiěnog položaja i duboke usječenosti u kopno, u Bokokotorskom zalivu vladaju drugačiji uslovi nego u otvorenom moru južnog Jadrana. Konstatovana su velika i česta kolebanja temperature it saliniteta, najveća u površinskim slojevima ($0-15 \mathrm{~m}$) a najmenja na samom morskom dnu Zaliva. Ta kolebanja su daleko izrazitija u unutrašnjem dijelu Bokokotorskog zaliva nego u spoljas̃njem. Takođ̃e je konstatovano da u Kotorskom, kao i u Risanskom Zalivu vladnju mnogo drugačiji uslovi nego u Tivatskom a pogotovo u Hercegnovskom zalivu.

Takode je konstatovano, na osnovu dosadašnjih istraživanja, da abiotski faktori, prvenstveno temperatura I salinitet, dosta utiču na kva-litativno-kvantitativnu distribuciju makro-Mollusca u Bokokotorskom zalivu. Koliki je uticaj tih faktora na kvalitativno-kvantitativnu distribuciju makro-Mollusca za sada samo možemo naslutiti na osnovu nekih indicija, npr, vertikalne rasprostranjenosti pojedinih vrsta na jednoj poziciji, horizontalne rasprostranjenosti vrsta, gustine pojedinih vrsta i sl. Ova pojava je naročito karakteristična za Kotorski zaliv.

Isto tako konstatovano je da su, zbog sve vece zagadenosti mora u Bokokotorskom zalivu, a posebno unutrašnjeg dijela, pojedine vrste Mollusca potpuno nestale iz Zaliva (Ostrea adriatica LAMK.) ili se svode na sve manji broj jedinki (Ostrea edulis L.). Ovo se odnosi na jedinke ovih vrsta koje žive slobodno u prirodi, tj. izvan gajalista.

Vrste makro-Mollusca rasprostranjenih po čitavom Bokokotorskom zalivu:

> Gast eropodi
> Diodora gibberula LAMK.
> Diodora graeca L.
> Patella coerulea L.
> Patella lusitanica GMEL.
> Patella vulgata L.
> Calliostoma zizuphinum L.
> Calliostoma conolus L.
> Monodonta turbinata BORN.
> Gibbula magus L.
> Gibbula divaricata L.
> Astraea (Bolma) rugosa L. Littorina neritoides L.
> Turritella tricarinata BR. f. communis RISSO
> Vermetus (Serpulorbis) arenarius L.
> Cerithium vulgatum BRUG.
> Cerithium rupestre RISSO
> Scala communis LAMK.
> Calyptraea chinensis L.
> Crepidula moulinsii MICH.

Aporrhais pes-pelecani L .
Natica millepunctata LAMK.
Natica hebraea MART
Murex trunculus L.
Murex brandaris L.
Columbella rustica L .
Pisania maculosa LAMK.
Nassarius (Hinia) pygmaeus LAMK.
Nassarius (Hinia) reticulatus L.
Fusinus (Aptyxis) rostratus OLIVI
Conus mediterraneus BRUG.
Amphineura
Chiton olivaceus SPENG.
Scaphopoda
Dentalium (Antalis) dentale L.
Bivatvia
Nucula nucleus L.
Leda pella L.
Arca barbata L.
Arca noae L.
Arca lactea L.
Area diluvii LAMK.
Glycymeris pilosa L.
Mytilus galloprovincialis LAMK.
Brachyodontes minimus POLI
Modiolus barbatus L.
Lithophaga lithophaga L.
Pinna nobilis L.
Pinna pectinata L.
Pteria hirundo L.
Pecten jocobaeus L.
Chlamys varia L .
Spondylus gaederopus L.
Anomia ephippìum L.
Ostrea edulis L.
Isocardia cor L.
Cardium edule L.
Cardium tuberculatum L.
Cardium paucicostatum SOWERBY
Cardium echinatum L.
Venus verrucosa L .
Venus (Chione) gallina L.

> Venerupis decussata L.
> Mactra corallina L.
> Scrobicularia plana DA COSTA
> Solen vagina L.
> Pharus legumen L.
> Hiatella rugosa L.
> Aloidis gibba OLIVI
> Teredo navalis L.
> Cephalopoda
> Sepia officinalis L.
> Sepia elegans D'ORB.
> Eledone moschata LEACH.
> Sepiola rondeleti LEACH.
> Loligo vulgaris LAMK.

Vrste makro-Mollusca rasprostranjenih samo u Hercegnovskom zalivu:

Gastropoda
Haliotis lamellosa LAMK.
Emarginula fissura L.
Cantharidus striatus L.
Gibbula umbilicaris L.
Clanculus corallinus GMEL.
Gibbula obliquata GMEL.
Leptotyra sanguinea L.
Vermetus (Petaloconchus) subcancelatus BIV.
Capulus hungaricus L.
Natica josephinia RISSO
Natica sp.
Суртеа ругит GMEL.
Cyprea spurca L.
Primovula adriatica SOW.
Trivia adriatica MONTEN
Buccinulum corneum L.
Nassarius (Sphaeronassa) mutabilis L.
Nassa neritea L.
Fusinus (Aptyxis) syracusanus L.
Fusus pulchellus PHIL.
Fasciolaria sp.
Mitra ebenina (ebenus) LAMK.
Bivalvia
Area tetragona POLI

Glycymeris glycymeris L.
Avicula tarentina LAMK.
Chlamys (Aequipecten) opercularis L.
Chlamys glabra L.
Lima lima L.
Lima hians GMEL.
Cardium exiguum GMEL
Laevicardium oblongum GMEL.
Tellina distorta POLI
Tellina pulchella LAMK.
Vrste makro-Mollusca nadenih samo u Hercegnovskom i Tivatskom zalivu:

Gasteropodi
Calliostoma laugieri PAYR.
Dolium galea L.
Scaphopoda
Dentalium vulgare DA COSTA
Bivalvia
Loripes lacteus L.
Cephalopoda
Sepiola oweniana D'ORB.
Sepiola petersii STSTRP.
Todarodes sp.
Octopus vulgaris LAMK.
Vrste makro-Mollusca nađenih samo u Hercegnovskom i Kotorskom zalivu:

Bivalvia
Tellina sp .
Vrste makro-Mollusca nađenih samo u tjesnacu Verige:
Bivalvia
Divaricella divaricata L.
Chama gryphina LAMK.
Chama lamellosa LAMK.
Irus irus L.

Venerupis aureus GMEL.
Vrste makro-Mollusca nadenih samo u Risanskom zalivu:
Gasteropodi
Cyprea lurida L .
Vrste makro-Mollusca nadenih samo u Risanskom zalivu i u prodoru Verige:

Gasteropoda
Tritonalia erinacea L.
Vrste makro-Mollusca nađ̂enih samo u Hercegnovskom zalivu i in tjesnacu Verige:

Bivalvia
Hiatella arctica L.
Vrste makro-Mollusca nadenih samo u Kotorskom zalivu:
Gasteropoda
Cerithium sp.
Strombiformis subulata DONOV.
Polynices (Lunatia) alderi FORB.
Nassa (Hinia) costulata RENIER
Philine aperta L.
Bivalvia
Pitar rudis POLI
Venus fasciata DONOV.
Thracia combulordea DE BL.
Thracia sp.
Vrste makro-Mollusca nađenih samo u Kotorskom i Risanskom zalivu:

Bivalvia
Leda fragilis SHEM.
Psammobia depressa RENNANT
Cuspidaria cuspidata OLIVI
Vrste makro-Mollusca nadenih samo u Kotorskom zalivu i u prodoru Veriga:

Gastropoda
Cassidaria echinophora L.
Bivalvia
Donacila correa POLI
Vrste makro-Mollusca nađenih samo u Kotorskom i Risanskom zalivu i u prodoru Veriga:

Bivalvia
Dosinia lupina L. Solenocurtus pelucidus L.

VIII LITERATURA

Babiek. Zivot Jadranskog mora, Zagreb 1928.
Babic K. Pogledi na biologicka i bionomičke odnose u Jadranskom moru, Zagreb 1911.

Bini Gi. Catalogo dei nomi dei pesci dei molluschi e dei crostacei di importanca commerciale nel Mediterranco, Roma 1965.
Bisacchi I. Molluschi marini. Arch. Zool. Ital., 12, 1928.
Brusina Spiridon Fauna dei Mollusci Dalmati, Vienna 1866.
Bucquoy, Dautzenberg et Dollfus Les Mollusques marins des Roussillon, Paris 1892., 1893.; 2 Vol, et 2 atlas de 165 pl.
Cerruti A. Ulteriori notizie sullallevemento della Pinna nobilis nel Mar Piccolo di Taranto. La Recerca Scientilica, 1939.
Coen D. Nuovo saggio di una Sylloge Molluscorum Adriaticorum, Venezia 1937.
Conci C., Chisotti F., Arfulli N. Conchiglie, Milano 1966.
Dautzenberg PH1. Atlas de Poche des Coquilles des cotes de France (Manche, Ocean, Mediterrance). - Paris 1897.
Diromela U. Żivot našeg Jadrana, Split 1933.
Ercegović A. Zivot u moru, Zagreb 1949.
Ercegovic A. Ispitivanja hidrogralskih prilika i fitoplanktona u vodama Boke u jesen 1937. - Godis̃njak Occan. inst. Kralj. Jugoslavije, No 1. Split, 1938.
Fischer P, Manuel de Conchyliologie et de lalcontologie conchyliologique. Paris 1887.
Gamulin H.-13rida Biocenoze muljevitog dna otvorenog sredricg Jadrana. Acta adriatica, Inst. za ocean. i ribarstvo, Split, Vol. X, No 10, 1965.
Gamulin H.-Brida Biocenoze dubljeg litorala u kanalima srednjeg Jadrana. Acta Adriatica, Inst. za ocean. i ribarstvo, Split, Vol. IX, No 7, 1962.
Hidalgo J. G. Fauna malacologica de Espana. Portugal y Las Baleares. Moluscos testaccos marinos, Madrid 1917.
Issel Raffaele Biologia marina, Milano 1918.
Karaman G., Gamulin H.-Brida Kvalitativno-kvantitativni sastav bentoskih biocenoza u Bukokotorskom zalivu. - Zavod za biologiju mora, Kotor 1965.
Kobelt W. Iconographie der Schalentragenden Europaichen Meeresconchylien. 1. 2, 3 band. 1887.

Kolombatovic D. O mečl - (Mollusca, Cephalopoda, Dibranchiata) Pomorskog okru).ja Spljeta u Dalmaciji, Spljet 1890.
Kolosvary G. Echinodermata iz Boke Kotorske. - GodiSojak Occan. inst. Kralj. Jugoslavije, No 1, Split 1938.
Kuckuck P. Der Strandwanderer. Die wichtigsten Strandpllanzen, Meeresalgen und Seetierc der Nordund Ostee, München 1929.

Lavori Della Società Malacologica Italiana. - Volume 11, Milano 1965. Volume III, Milano 1966.
Lepetic V. Sastav i sezonska dinamika ihtiobentosa i jestivih avertebrata u Bokokotorskom zalivu i mogućnosti mjihove eksploatacije. - Studia marina, No 1, Kotor 1965.
Linardic J. Prilog poznavanju g:ografskog rasprostranjenja jadranskog fucusa (Fucus virsoides), Zagreb 1940.
Milojevic B. Boka Kotorska. - Zbornik radova Gcografskog instituta SAN, Beograd 1953.
Nabre A. Fauna malacologica de Portugal: Moluscos Marinhos e das Aguas Salobras, Purto 1938-1940.

Nobre A. Moluscos Marinhos de Portugal, Porto 1936.
Parenzan P. Malacologia Jonica. - Introduzione allo studio dei Molluschi dello Jonio-Thalassia Jonica, Taranto 1961.
Parenzan P. Biocenologia bentonica dei fondi marini at Iango. Boll. Idrobibl, Caccia e Pesca dell A.O.1. 1940.
Parenzan P. Ricerche sulle biocenosi del Golfo di Napoli. Atti Soc. Ital. Progr. Scienze, Vol. III, 1932.
Parenzan P. Contributo alla conoscenza dei fondi marini a sabbia del Mediterraneo. Boll. Idrob. C. e Pesca dell A.O.I., 1940.
Parenzan P. Mitilicoltura. Biologia, allevamento e controllo sanitario dei Mitili. Lez tenuta Corso spec. Università Perugia, 1952.
Parenzan P. Elementi di Molluschicoltura. Pubbl. UNAM, Napoli, 1953.
Parenzan P. Esplorazione biologica del fondo del gollo di Napoli, Caratteristiche topografiche delle varie biocenosi. Boll. Soc. Natur. Napoli.
Parenzan P. Biocenologia del fondo marino a Zosteracee del Mediterranco, Atti Conv, Unione Zoologica Italiana, Napoli, 1965.
Parenzan P. Esperimenti sulla facolta di scelta dei materiali nella costruzione dei suoi nidi, in Lima inflata CHEMN. (moll.) Boll. di Pesca. Min. Agr. For. No 2, 1957.

Parenzan P. Un caso eccezionale di inlestazionc di Pinna nobilis per parte del mollusco litofago Castrochsena dubia DESH. Boll. di Pesca del Ministero Agric, e Foreste, A. XXXII, No 5, settembre-oltobre 1956.
Parenzan P. Formazioni coralligene mediterranee e loro biologia. sBollettino di Zoologiaa, Vol. XXIV, I. II, 1957.
Parenzan P. Contributo alla conoscenza delle elevazioni sottomarina del Golfo di Napoli, Costituzione bio-topogralica e biocenologica, Boll. Soc. Naturalisti, Napoli, 1954.
Parenzan P. Aspetti biocenotici dei fondi ad Alghe litoproduttrici del Mediterraneo. Rapp. Proc, verb. CIESM, Vol. XV, I. 2, 1960.
Piersanti C, I Molluschi e le conchiglie, Milano 1926.
Priola O. Molluschi del porto di Catania. - Estratto dagli Atti della Società Toscana di Scienze Naturali Residente in Pisa-MEMORIE, Vol, LXIII-Serie B, Pisa 1956.

Priolo O. Nuova revisione delle conchiglie marine di Sicilia. - Estratto da *Atti della Accadernia Gioenia di Scienze Naturalis in Catania. Memoria I, serie 6 - Vol. VI, Catania 1948.
Memoria II, Serie Sesta. Volume VII, Catania 1950.
Memoria III. Serie Sesta. Vol. VII, Catania 1950-1951.
Memoria IV. Serie Sesta. Volume VIII, Catania 1951-52.
Memoria V. Serie Sesta. Vol. VIII, Catania 1951-52.
Memoria VI. Seric Susta, Vol. IX, Catania 1952-53.
Memoria VII. Serie Sesta. Vol. IX, Catania 1952-54.
Memoria VIII. Serie Sesta. Vol. X, Catania 1955.
Memoria IX. Serie Sesta. Vol. X, Catania 1955-56.
Memoria X. Serie Sesta. Vol. XI, Catania 1957-58.
Memoria XI. Serie Sesta, Vol. XII, Catania 1959.
Memoria XII, Serie Sesta. Vol. XIII (Parte I), Catania 1960.
Memoria XIII. Serie Sesta. Vol, XIII (Parte II), Catania 1961.
Memoria XV. Serie Sesta. Vol, XVI, Catania 1964.
Memoria XVI. Serie Sesta. Vol. XVII, Catania 1965.
Rudolph Heinz Die sepiolinen der Adria, Leipzig 1932.
Sebastio C. I Molluschi gasteropodi eduli dei mari italiani. Ist. Sperimen. di Pescara per ligiene e controllo veterinario dei prodotti della pesca.
Steuer Ad. Die Fischereigrunde vor Alexandrien XLX Mollusea. Bolzano 1939.
Stjepěević J., ZunjićV. Bokokotorski zaliv - fiziografske osobine. - Godišnjak Geografskog društva SR Crne Gore, Cetinje 1964.
Torchio M. Osservacioni eco-etologiche su taluni Cefalopodi del Mar Ligure, Estratto dagli Atti della Societa Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano, Milano 1965.

Vatova A. Le zoocenosi dell'alto Adriatico presso Rovigno e loro variazioni nello spazio e nel tempo. Thalassia, Vol, V. No 6, Venezia 1943.

Valova A. Caratteri della 「auna bentonica dell'Alto e Medio Adriatico e zoocenosi cui dà origine. Pubbl della Staz. Zool. di Napoli. Vol. XXI, fasc. 1. Napoli 1947.
Vatova A. Ricerche quantitative sul bentos del Golfo di Rovigno. Note dell'Istituto Italo-Germanico di biol, morina di Rovigno d'Istria. No 12, Venezia 1934,
Vatova A. Ricerche preliminari sulle biocenosi del Golfo di Rovigno d'Istria, Vol. II. No 2, Venezia 1935.

Vatova A. La fauna bentonica del Carnarome del Canal d'Arsa. Note dell'Ist. Italo-Germanico di biol marina di Rovigno d'Istria No 23, Venezia 1942.
Vatova A. La fauna bentonica dell'Alto e medio Adriatico. Ist. di biol marina per l'Adriatico, Vol, 1, No 3, Veneria 1949.
Zei M. - Zhàne1 J. Zivot našeg Jadrana, Zagreb 1948.
Zlokovic Đ. Hidrografske prilike okoline Risna u Boki Kotorskoj. Arhiv Ministarstva poljoprivrede. God. VI sv. XV, Beograd 1939.

ABSTRACT

MACROMOLLUCS OF BOKA KOTORSKA BAY

It is known that Boka Kotorska Bay has a specific position in the Adriatic sea. This specificity is not conditioned by geographical pusition only, but also by especially biotic and abiotic environmental factoris.

Therefore the life conditions of this bay considerably differ from those of the open sea part of the Adriatic. It should be noted that Boka Kotorska bay was so far unknown concerning molluscs.

The middle and the northern part of the Adriatic were in this point of view partly explored but these investigations were not sufficiently complete. At present we have not yet more considerable investigations except some works made by Dr G. Karaman and Dr H. Gamulin-Brida (1965). Therefore our main task is to obtain and give a general picture of macromolluses communities and habitats and their distribution and localities, i. e, the main object of our investigations is fo give a faunistical survay of Boka Kotorska bay macromolluses.

In the same time we made the hydrographical measurements (temperature, salinity, transparency of the sea, and mecanical composition of the sea bottom), which may have a very considerable and dilferent significance in distribution of macromolluses in Boka Kotorska bay.

The hydrographical data are given in table apendix
One of the first objectives was to determine the distribution of the molluses.

During our investigations we noted the high mortality of certain species of Boka Kotorska macromolluses especially of bivalves owing the pollute water and other, refuses and offals.

The Boka Kotorska bay is the most sinuous part of the Adriatic coast. The Boka Kotorska geographical position is determined: $42^{\prime \prime} 31^{\prime} 00^{\prime \prime}$ (N), $42^{\circ} 23^{\prime} 32^{\prime \prime}$ (S), $18^{\prime} 46^{\prime} 32^{\prime \prime}(\mathrm{I}), 18^{\prime \prime} 30^{\prime} 29^{\prime \prime}$ (W).

Boka Kotorska comprises four smallev bays, inlets (Kotor bay, Risan bay, Tivat bay and Hercegnovi bay and the entrance, respectively, the bay-mouth-ealled Verige).

The water surface of the whole bay is $87.334 \mathrm{~km}^{2}$ and this representes the 0,06 per cent of the whole Adriatic sea. The surface of the offshore parts of the Boka Kotorska bay is $63.067 \mathrm{~km}^{2}$ what is about 2,59 times larger of the inshore parts surface of the bay which contain 24,267 km^{2}. The total volume of the Boka Kotorska bay is $2,412.306,000 \mathrm{~m}^{2}$.

The Kotor bay comprises $18,2 \%$ of the total bay surface. Risan bay makes part of $8,5^{9 / 2}$, Tivat $36,4^{6 / 6}$ and Hercegnovi $36.99 / 0$.

The greatest depth is 61 m and the mean depth is $27,6 \mathrm{~m}$. The coast line length is $105,7 \mathrm{~km}$ (Stjepčevié, J. Zunic, V. =Geographical Jear-booke SRCG, page: 75-76, 1964).
B. Z. Milojevie (The Miscellany of Academy Sciency Geographical - Geografski Zbornik AN Srbije - Volume, 5, page: 16-17). points on two types of the shore by Rihtofen classification the lateral and the elonbate one. The lateral in ridges and the elongate with shoreline and bays, The shoreline is very shaped 3,62 (Murajevski). The profiles of the shelf show the presence of many minor terraces that may present the effects of waves during the long formation of the bay-

The features of submarine rellef may be grouped in two main categories: The first is the continental shelf and the second is the deeper part of the bay.

Concerning the small surface of the whole bay we note that Boka Kotorska bay shoreline greatly consists of steep sides and there are very small banks to find in the bay beeing partly in south east side of the Risan bay and Tivat bay as well as the east part of Hercegnovi bay but there is no banks in Kotor bay at all.

The structure of the main part of the Boka Kotorska bay is of soft mud. (Lepetić, V. Studia Marinaк page. 22, 1965). Kotor bay, Risan bay and the entrance in Boka Kotorska bay is mainly of clay texture, and in Risan bay is of clayey sand and clayey silt.

In Hercegnovi bay we found clayey sand and sand (Dr Karaman, G. and Dr H . Gamulin-Brida) during their investigations found the structure of Boka Kotorska bay littoral shelf bottom of terrigenous and mineral origin. The central parts of the Boka Kotorska bay are covered by soft terrigenous mud with more or less detrital elements. The inshore zone of Kotor, Tivat and Hercegnovi bays are of sandy mud. The east part of Kotor bay bottom is rich in Zostere and the northeast inshore parts of Hercegnovi bay and Igalo with inlet Njivice showed the great concentration of Cymodocea nodosn (UGRIA), Posidonia oceanica (LINN) and Zostera marina (LINN.).

Owing the specific position, the hydrographic conditions considerably differ from those ones of the open part of the Adriatic. The closed parts differ also rom the open part of the same Boka Kotorska bay. The life conditions od Kotor and Risan bay are considerably different from those ones of Tivat and Hercegnovi bays.

During our investigations we stated considerable temperature variations in the begining of autmn. We also noted that temperature of upper layers was lower than that ones of deeper layers (Tab. 2.).

The same we stated on the various positions (stations) of the surface layers but this is remarkable for the closed parts of the bay only.

Throughaut the annual variations of temperature taking in consideration the specificity of the bay we could not find the constant temperature in the surface layers (from $0-15 \mathrm{~m}$)

The temperature is increasing from Kotor and Risan bay toward Tivat and Hercegnovi bay and open sea not only in surface layers but also in deeper ones.

The different values of surface and subsurface layers are mainly conditioned by springs and wells alongside the seashore as well as by the precipitation and run off.

There is also a considerable salinity variation over the investigated stations, (Tab. 7-11). It is noted that salinity decrease from the open sea toward Hercegnovi, Tivat, Risan and Kotor bay. The difference of salinity values between Kotor and Hercegnovi bay reaches sometimes $24,51 \%$ (Tab. 8.) or $24,93 \%$ (Ercegovic, 1937). However these oscilations are not constant because of precipitations and run off. The differences are sometimes very small. Tab. 9-11. But in a year cycle we found the lower salinity values in Kotor and Risan bay in relation to Tivat and Hercegnovi bays. These differences are concerning only the surface layers (from $0-15 \mathrm{~m}$.) while the deeper layers differences are considerably lower but they occur always.

The salinity is increasing wit the dopth. In period between October and May the salinity of surface layers in Kotor bay is considerably lower than in 15 m deep layers. In Risan bay this difference is even more remarkable.

The period betwen Octobre and May is the period of the most remarkable temperature and salinity variations influenced by run off and precipitations.

We stated the lemperature maximum in the offshore layers because of minimal influence of springs and wells.

Our investigations showed that the kvalitative and kvantitative distribution of macromolluses depend on bottom composition and hydrographical conditions. We constated the dependence but not the gedree of dependence.

These investigations 'give the first illustration of kvalitative distribution of macromolloses in Boka Kotorska bay. During our investigations we collected 138 species of macromolluses 62 of which were Gastropoda, 1 Amphiura, 2 Scaphopoda, 64 Bivalvia, 9 Cephalopoda. It is intersting to note that Boka Kotorska bay is rather rich in macromolluses especially Gastropoda and Bivalvia. The number of species is increasing from inshore waters to offshore ones but the number nf specimens is considerably greater in the inside parts of the bay.

We stated 62 species of Gastropoda 30, of which are dispersed oll over the bay and 24 species were found only in Hercegnovi bay - two of which we found in Risan bay, 1 in the entrance of Boka Kotorsika bay and 6 in Kotor bay.

We found only one species of Amphiura in Hercegnovi bay. From two species of Scaphopoda one is dispersed all over the bay and the other was found in Hercgnovi bay, and Tivat bay.

From the total of 64 species of Bivalvia 34 of which were dispersed all over the world and 15 only in Hercegnovi bay, one of which was found in Tivat bay, one in the entrance of Boka Kotorska bay and one in Kotor bay.

Five species were found in the entrance of Boka Kotorska bay Verige, 10 species in Kotor bay (five of which were found in Risan bay) and three in Verige (entrance). From total of 9 species of Cephalopoda 5 species were dispersed all over the bay and 4 of them were found in Fiercegnovi bay only.

From 138 species of macromolluses in Boka Kotorska bay 71 species were wide dispersed in the bay, 44 were found only in Hercegnovi bay 14 of which were found in Tivat bay, one in Kotor bay and one in the entrance of the bay - Verige. So far were found only 5 species in the entrance of Boka Kotorska bay - Verige.

Two species were found in Risan bay (one of which was found in the entrance of the bay - Verige), and 16 species were found in Kotor bay, 6 of which were found in Risan bay and 4 in the entrance of Boka Kotorska bay - Verige.
$P R 1 L O Z$ I

號號

\qquad ${ }^{*}{ }^{*} \times$

 －\quad • - － －－ ——＊＊ — - － —
 \cdots－－\quad－

 | | | |
| :--- | :--- | :--- | :--- | :--- |
| | | |

 $\longrightarrow \quad \ldots$

（ －＊＊＊＊ 0°

\square

 $\square \quad \cdots \quad 0_{0}^{\infty}$ $\square-{ }^{-}{ }^{*}$
 $\square-0_{0}^{\circ}=$ $\square \quad-\quad 0_{0}^{0}$ $\square \longrightarrow 0_{0}^{0}=$ $\rightarrow \quad \times \times 0$ $\square — — 0_{0}^{0}$ a $\square \longrightarrow-\quad 0^{\circ}=$ $\square-\quad-\quad \frac{0}{\pi}=$ $\square \quad-\quad 0_{0}^{0}$

 $\square \quad-\quad e_{0}$ $\square \times-\quad$ 最 $\square-e_{0}^{0}$
 －\quad E $\square \longrightarrow \quad \underbrace{\square}_{\square}$ \square－ $\rightarrow \cdots$

Tabela br． 1
PREGLED TEMPERATURE NA ISTRAZIVANIM POZICIJAMA U BOKOKOTORSKOM ZALIVU U PERIODU V－VI 1963．GODINE

TEMPERATURE DATA IN INVESTIGATED LOCALITIES IN BOKA KOTORSKA BAY IN PERIOD V－VI 1963

Datum （Date）		Dubita a metr． （Depth in m．）	Temperatura $\mathrm{u}^{\circ} \mathrm{C}$（Temperature in ${ }^{\circ} \mathrm{C}$ ）			
			Morska povrsina （Surface）	Sredina （Middle lavers）	Mor．drio （Bottom）	Srednja temp． vrijednost （Mean teitip． value）
is．V 1963	1	10，0	12，90	12，40	16，40	15，50
万．V 1963.	2	10,0	13，60	17.40	16，90	15,97
大．V 1963	3	12，0	13，60	17.58	15，80	15．66
¢．V 1963.	4	14,0	14，81	17，00	15，70	15，83
万．V 1963	5	14,0	13，42	16，42	16，20	15.34
c．V 1963.	6	17,0	14,92	16,38	15，56	15，62
o．V 1963.	$\overline{7}$	17，0	15，38	16，38	16，19	15,98
in．$V 1963$.	8	19，0	14，95	16，40	15，62	15，66
i6．V 1963.	9	24，0	18，75	15，85	14，90	16，50
16．V 1963.	10	24，5	18，20	15，30	15，08	16，19
16．V 1963.	11	20，0	18，80	15，65	15，10	16，51
i6．V 1963.	12	19,0	19，30	15，60	15，20	16，70
i6．V 1963.	13	26，0	18，75	15，20	15，25	16，40
16．V 1963.	14	27，0	19，45	15，19	15，20	16，61
16．V 1963.	15	31,0	19，95	14，80	15，00	16，58
f6．V 1963.	16	29，0	18，42	14，95	15，10	16，15
i6．V 1963.	17	32，0	18，70	14，90	14，90	16，16
16．V 1963.	18	29，0	19，80	15，20	14，95	16，65
16．V 1963.	19	26，0	19，90	14,95	14，98	16，61
28．V 1963.	20	18，0	21，50	15，78	15，40	1756
28．V 1963.	21	23，0	22，60	15，80	15，35	17，91
28，V 1963.	22	17，0	21，50	16，50	15，45	17.81
28．V 1963.	23	28，0	20，85	15，41	15，42	17，22
28．V 1963.	24	29.0	20，30	15.38	15，41	17，03

Datum (Date)		Dubina a metr. (Depth in m .)	Temperatura $u^{\circ} \mathrm{C}$ (Temperature in ${ }^{\circ} \mathrm{C}$)			
			Morska povrsina (Surface)	Sredina (Middle tayers)	Mor, dno (Botiom)	Srednja temp. vrijednost (Mean temp. value)
28. V 1963.	25	31,0	21,72	15,62	15,39	17,57
38. V 1963.	26	34,0	21,30	15,60	15,50	17,46
28. V 1963.	27	34,0	2080	15,80	15,20	17,36
28 V 1963	28	31,0	18,90	15,74	15,60	16,74
$28 . \mathrm{V} 1963$.	29	31.0	20,40	15,64	15,70	17,24
28. Y 1963.	30	33.0	19.65	15.75	15,80	17,06
28. V 1963.	31	25,0	20.59	15,60	15,80	17,33
28. V 1963.	32	29.0	19,50	15.60	15,75	16,95
28. V 1963.	33	27,0	21.90	15,00	15,70	17,73
28 V 1963	34	13.0	2230	16,42	16,78	18,36
28. V 1903.	35	9.0	20,30	16,65	16,70	17,88
28.81963.	36	26,0	21,16	17,30	15,78	18,10
28. V 1963.	37	22.0	2120	15,64	15,95	17,59
28.81963.	38	17.0	2090	15,76	15,80	17,46
28. V 1963.	39	14,0	21,00	16,20	16,10	17,76
28. V 1463.	40	11,0	21,40	16,20	16,08	17,89
29. Y 1903,	41	38,0	19.45	15,80	15,60	16,95
29.V 1953,	42	37,5	20,50	17,80	15,55	17,98
29. V 1963.	43	17,0	2025	15,80	16,35	17,46
29. V 1963	44	17.0	20,60	16,90	16,43	17,97
29. V 1963	45	37.5	20,70	16,00	15,58	17,42
29. V 1963	46	35,0	22,40	16,15	15,70	18,08
29. V 1963.	47	21,5	21,50	16,38	16,16	18,01
29.1963	48	17,0	22,30	16,00	15,60	17,96
29. V 1967.	49	34.5	22,10	15,90	15,55	17,98
29. V 1963.	50	15,0	22,60	16,60	16,50	13,56
29. V 1963.	51	20,0	23,02	16,60	16,70	18,77
29. V 1963	52	9,0	22,78	18,01	17,48	19,42
29. V 1963.	53	16,0	22,50	17,20	16,40	18,73
29. V 1963.	54	12,0	23,40	17,45	16,02	18,95
29. V 1963.	55	12,0	23,54	17,24	16,40	19,09
29 V 1963	56	10,0	20,20	18,10	16,80	18,36

$\begin{aligned} & \text { Datum } \\ & \text { (Date) } \end{aligned}$	$\begin{aligned} & \frac{3}{3} \\ & \frac{3}{N} \\ & 0.3 \\ & 203 \end{aligned}$	Dubina umetr. (Depth in im.)	Temperatura $\mathrm{u}{ }^{\circ} \mathrm{C}$ (Temperature in ${ }^{\circ} \mathrm{C}$)			
			Morska povrsina (Surface)	Sredina (Middle layers)	Mor, dno (Bottom)	Srednja temp. vrijednost (Mean temp. value)
29. V 1963.	57	6,0	21,80	18,80	17,20	19,26
29. V 1963	58	16,0	22,60	17,38	16,90	18,96
6. VI 1963.	59	23,0	22,42	17.56	16,20	18,72
6. V7 1983	60	27,0	22,25	16.59	16.42	18,42
6. V1 1963.	61	37,0	22,18	19,20	15.60	18,99
6. VI 1963.	62	27,0	22,00	16,60	15,90	18,16
6. VI 1963.	63	15,0	21,90	18.80	16,90	19,20
6. in 1053	54	750	22,10	1770	16,18	18.75
6. VT 1963.	65	36,0	22,50	16,30	15,80	18,36
6. VI 1963:	66	35,0	22,65	16,94	15,60	18.39
6. VI 1963,	67	19.0	22,60	18,90	17,00	19.50
6. VI 1963.	68	35.0	23,38	16,85	15,90	18,71
6. VI 1963.	69	13.5	23,18	20,20	18,90	20,76
6. VI 1963	70	7.0	23,20	21,85	20,38	21,81
6. V1 1963	71	6,0	23,00	21,80	21.00	21,93
14. V1 1963	72	6,0	22.72	23.18	23,18	23,02
14. V1 1963.	73	16,0	22.60	22.85	21.20	22.21
14. V1 1903.	74	13,0	22.92	22,92	22,60	22.81
14. V1 1963.	75	35.0	22,30	17,85	16,02	18,72
14. Vt 1963.	76	40,0	22,80	17,38	15,80	18,66
14. V1 1963 .	77	28,0	22,75	16,90	16,18	18,61
14. VI 1963.	78	29.0	23,40	22,71	16,40	20,83
14. V1 1963	79	25,0	23,10	22,55	16,20	20,61
14. VI 1963	81	37.0	22,18	17,75	15,90	18,61
14. VI 1963.	82	41,5	23,30	17.50	15,80	18,86
14. V1 1963.	33	51.0	23,20	22,50	15,45	20,38
14. V1 1963.	84	43,0	23,50	17,18	15,60	18,76
14. VI 1963.	85	53,0	23,58	16,86	15,40	18,61
14. VI 1963.	86	38.5	23.50	18,10	17,20	19,60
14. VI 1963.	88	37,0	23,50	1798	16,00	19.16
Prostečna vriciednost:			20.86	1716	16.26	18,09

Tabela br： 2
PREGLED TEMPERATURE NA ISTRAZIVANIM POZICIJAMA L 3OKOKOTORSKOM ZALIVU U PERIODU IX－X 1963．GODINE FEMMPERATURE DATA IN INVESTIGATED LOCALITIES IN BOKA KOTORSKA BAY IN PERIOD IX－X 1963.

Datum （Date）	$\begin{aligned} & \text { 呂合 } \\ & \text { 合 } \\ & 20 \end{aligned}$	Dubina u metr． （Depth in m.$)$	Temperatura u ${ }^{\text {² }} \mathrm{C}$（Temperature in ${ }^{\circ} \mathrm{C}$ ）			
			Morska povrsina （Surface）	Sredina （Midalle layers）	Mar．dno （Bottom）	Srednja temp． vrijednost （Mean temp． value）
28．IX 1963.	2	10,0	16，30	24，00	23，90	21，40
28．IX 1963	4	15，0	17，26	23，20	22，80	21，08
28．IX 1963	8	20，0	18.88	23，28	22，25	2120
28．IX 1963.	9	21，0	1790	20，15	21，10	19，71
28．IX 1963.	11	21，0	18，47	20，85	22，20	20，50
28．IX 1963.	12	17，0	18.50	20，90	21，35	20，25
28．IX 1963.	13	23，0	1745	20，05	19.40	18，96
28．IX 1963.	14	29,5	18,75	22，90	18.95	20，20
28．IX 1963.	15	27.0	17,38	21，85	16，80	18，67
28．IX 1963.	16	25，5	19.32	20，73	18，58	19.54
28．IX 1963.	17	33，0	1880	22，90	19.58	20，42
28．IX 1963.	18	24，0	17，90	20，95	17，59	18，81
28．EX 1963.	20	19.5	16，00	23，00	21，40	20，13
28．IX 1963.	21	26,5	16，43	22，90	20，85	20，06
28．IX 1963.	25	32，0	17，48	22，30	16，67	18，81
28．IX 1963.	26	35，0	17，40	23，40	18，60	19.80
28．IX 1963.	27	31,0	17，45	23，20	17，48	19，37
28．IX 1963.	28	30，0	16，98	23，10	18，47	19，51
28．IX 1963.	29	29，5	16,70	22，75	20，30	19.91
28．1X 1963.	30	34，0	17，28	22，80	18，58	19.55
28．IX 1963.	31	25，0	18，15	22，30	17，95	19，46
28．LX 1963.	32	33,0	20，05	22，70	22，10	21，61
28．IX 1963．	34	14，0	18，10	20，20	21，50	19.93

Datum (Date)		Dubina u metr. (Depth in m .)	Temperatura u ${ }^{\circ} \mathrm{C}$ (Temperalure in ${ }^{\circ} \mathrm{C}$)			
			Morska povrsina (Surface)	Sredina (Middle layers)	Mor, dino (Bottom)	Srednja iemp. vrijednost (Mcan temp. value)
28. LX 1963.	36	27,0	17,90	22,40	2026	20,18
28. IX 1963.	40	12,0	17,80	22,40	22,45	20.88
9. X 1963	41	35,0	17,80	22,10	20,60	20,16
9. X 1963.	42	38,5	17,90	22,63	21.85	20.79
9. X 1963.	43	16,5	17,15	22,70	19.15	19.66
9. X 1963.	44	17,0	19,10	21,90	20,25	20,41
9. X 1963.	45	37,5	18,28	22,59	22,12	20,99
9. X 1963.	46	30,5	20,65	22,75	21,85	21.75
9. X 1963.	47	22.0	20,47	23,28	22,66	22,13
9. X 1966.	48	17,0	20,35	23,30	22,85	22,16 *
9. X 1963.	49	31,0	19,57	22,64	22,32	21.51
9. X 1963	50	14,5	20,35	23,40	22,80	22,18
9. X 1963.	51	20,0	20,10	23,30	22,70	22,03
9. X 1963.	56	10,0	19.15	23,30	23,18	21.87
9. X 1963.	57	6,0	21.40	21,85	21,50	21,58
9. X 1963.	58	17,0	18,98.	22,60	22.48	21,35
9. X 1963.	59	22,5	19,00	22,55	22,40	21,31
9. X 1963.	60	26,0	19,10	22,90	21,60	21,20
9. X 1963.	61	37,0	20,07	22,66	18,98	20,57
9. X 1963.	62	26,5	18,95	22,90	19.41	20,42
9. X 1963.	63	17,0	19,66	23,12	22,64	21,80
9. X 1963.	65	31,0	19,40	22,71	22,53	21,54
7. X 1963.	66	32,5	19,35	22,75	22,10	21,40
7. X 1963.	67	19,0	19,70	23,05	22,10	21,61
7. X 1963.	68	36,0	19,30	22,10	18,80	20,06
7. X 1963.	69	18,0	-	-	22,63	22,63
7. X 1963.	70	8,0	19,25	20,15	20,55	19,98
7. X 1963.	71	7,0	-	-	23,10	23,10

Datum (Date)		Dubina u metr. (Depth in m .)	Temperatura $\square^{\circ}{ }^{\circ} \mathrm{C}$ (Temperature in ${ }^{\circ} \mathrm{C}$)			
			Morska povisina (Suriace)	Sredina (Middle layers)	Mor. dno (Bottom)	Srednja lemp. vrijednost (Mean temp. value)
7. X 1963.	72	9,0	2095	20,80	20,85	20,56
7. $\times 1963$.	73	16,0	19,37	20,95	20,40	20,40
7. X 1963.	74	13,0	20,15	21,00	19,54	20,20
7. X 1963.	75	38,5	-	-	18,09	18,09
7. X 1963.	76	40,0	19,50	21,10	16.89	19,16
7. X 1963.	77	28,0	20,90	22,70	22,67	22,09
7. X 1963.	78	29,0	19,98	22,74	22,65	21,79
7. $\times 1963$.	79	25,0	21,30	22,95	19,70	21,31
7. X 1963.	82	47,0	20,75	22,59	22,46	21,93
7. X 1963.	83	61,0	21,55	22,70	22,05	22,10
7. X 1963.	84	45,0	21,52	22.68	22,66	22,28
7. X 1963	86	35,0	22,43	22,68	22,60	22,57
Prosiečna vrijednost:			18,94	22,35	20,86	20,71

Tabela br. 3
PREGLED TEMPERATURE NA ISTRAZIVANIM POZICIJAMA IU BOKOKOTORSKOM ZALIVU U I 1964. GODINE
TEMPERATURE DATA IN INVESTIGATEO LOCALITIES IN BOKA KOTORSKA BAY IN I 1964.

Datum (Date)		Dubina 0 metr. (Depth (in m.)	Temperatura a ${ }^{\circ} \mathrm{C}$ (Temperature in ${ }^{\circ} \mathrm{C}$)			
			Morska povssina (Surface)	Sredina (Middle layers)	Mor. dun. (Bottom)	Srodnja temp. vrijetnost (Mean tomp. value)
28. I 1964.	2	10,0	10,28	14,63	13,42	12,77
28. I 1964.	4	16,0	10,93	14,98	13,21	13,04
28. I 1964.	8	19,0	9,82	15,19	12,13	12,38
28. 11964.	9	20,0	950	14,90	12,15	12,18
28. I 1964	11	21,0	12,36	15,36	13,89	13,87
28. I 1964.	12	17.0	13,05	15,10	13,55	13.90
28. I 1964.	13	20,5	12.80	15,40	13,60	13,93
28. I 1964.	14	30,0	12,20	14,95	13,80	13,65
28. I 1964.	15	25,0	12,05	14,80	13,85	13,56
28. I-1964.	16	25,0	12,70	13,95	12,60	13,08
28. I 1964.	17	31,0	12,13	14,98	13,76	13,62
28. I 1964.	18	24,0	12,40	14,35	13,66	13,47
28. I 1964.	20	21.5	8,00	14,79	13,81	12,20
28. I 1964.	21	26,5	9,15	14,85	13,20	12,40
28. I 1964.	25	31,0	9,38	15,18	13,68	12,74
28. 11964.	26	35,0	12,39	15,30	13,43	13,70
28. I 1964.	27	31,0	12,40	14,80	13,60	13,60
27. I 1964.	28	30,0	9,80	14,95	13,40	12,71
27. I 1964.	29	30,0	9,90	14,85	12,75	12,50
27. I 1964.	30	33,0	10,83	15,05	13,28	13,05
27, I 1964.	31	25,0	11,05	14,40	13,05	12,83
27. I 1964.	32	32,0	10.90	15,10	13,45	13,15
27. 1 1964.	34	14,0	12,08	14,00	13,72	13,46
27. I 1964.	36	27,0	10.98	14,68	13,81	13.16

(Date) Datum		Dubina u metr. (Depth in m .)	Temperatura $\mathrm{u}^{\circ} \mathrm{C}$ (Temperature in ${ }^{\circ} \mathrm{C}$)			
			Morska povrsína (Surface)	Sredina (Middle layers)	Mor. dno (Bottom)	Srednja temp. vrijednost (Mean temp. value)
27. 11964.	40	11,0	9,78	13,80	14,40	12,66
27.11964.	41	35,0	12,80	13,76	14,10	13,55
27. 1 1964.	42	39,0	13,30	13,70	13,10	13,36
27. I 1964.	43	17,0	13,60	13,55	12,85	13,33
27. I 1964.	44	17.0	13,20	13,60	13,20	13,33
27. I 1964.	45	37,0	13,61	13,81	13,79	13,73
27. I 1964.	46	30,0	13,95	14,52	13,80	14,09
27. I 1964.	47	19,5	13.98	13,42	13,38	13,46
27. I 1964.	48	17,0	13,60	13,60	13,25	13,48
27. 1 1964.	49	31.0	13,40	13,53	13,18	13,37
27. 11954.	30	14,0	13,00	13,15	13,10	13,08
27. i 1964.	51	20,0	12,90	13,40	13,30	13,20
27. 11964.	56	8.5	13,00	13,00	13,00	13,00
27. 11964.	57	6,0	10,85	10,85	10,85	10,85
27. I 1964.	58	17,5	12,85	12,85	12,72	12,80
24. 11964	59	22,0	12,56	12,80	12,83	12,73
24. I 1964.	60	26,0	12,58	13,00	13,27	12,95
24. I 1964.	61	37,5	13,40	13,52	14,40	13,77
24. I 1964.	62	26,0	13,45	13,50	13,75	13,56
24. 1 1964.	63	16,5	13,38	13,38	13,41	13,39
24. I 1964.	65	36,0	13,40	13,70	14,43	13,84
24. I 1964.	66	32,0	13,50	13,70	14,35	13,85
24. I 1964.	67	19,0	13,40	13,45	13,18	13,34
24. I 1964.	68	36,0	12,85	14.05	13,35	13,41
24. I 1964.	69	14,0	12,80	12,85	12,83	12,82
24. 11964.	70	8,0	12,70	12,70	12,78	12,72
24. I 1964.	71	7.0	12,83	12,80	12,66	12,76
24. I 1964.	72	9,0	12,90	12,92	12,90	12,90
24. 11964.	73	16,0	13,00	13.10	13,05	13,05
24. I 1964.	74	13,0	13,00	13,00	12,95	12,98
24. 11964.	75	38,0	13,04	13,12	13,33	13,16

Datum (Date)		Dubina u metr. (Depth in m .)	Temperatura $\mathrm{u}{ }^{\circ} \mathrm{C}$ (Temperature in ${ }^{\circ} \mathrm{C}$)			
			Morska površina (Surface)	Sredina (Middle layers)	Mor. dno (Bottom)	Srednja temp. vrijednost (Mean temp. value)
24. 11964.	76	40,0	13,25	14,05	15,35	14,21
24. I 1964.	77	28,0	13,30	13,89	14,70	13,96
24. I 1964.	78	36,0	13,80	14,10	15,20	14,36
24. I 1964.	79	25,0	13,90	14,00	14,10	14,00
22. I 1964.	82	47,0	13,48	14,09	15,18	14,25
22. 11964.	83	59,0	14,20	14,68	15,00	14,62
22.11964.	84	49,0	13,98	14,98	15,18	14,71
22. I 1964.	86	38,0	14,21	14,48	15,20	14,63
Prosječna vrijednost			12,38	14,01	13,52	13,30

Tabela br. 4
PREGLED TEMPERATURE NA ISTRAZIVANIM POZICIJAMA U BOKOKOTORSKOM ZALIVU U PERIODU III-IV 1964. GODINE TEMPERATURE DATA IN INVESTIGATED LOCALITIES IN BOKA KOTORSKA BAY IN PERIOD III-IV 1964.

Datum (Date)		Dubinut u metr. (Depth in m.)	Temperatura $\mathrm{U}^{\circ} \mathrm{C}$ (Temperature in ${ }^{\circ} \mathrm{C}$)			
			Morska povrsina (Surface)	Sredina (Middle tayers)	Mor. dno (Bottom)	Srcelnja temp. vrijednest (Mean temp. value)
31. 1111964.	2	10,0	11,00)	13,22	13,22	12.48
31. III 1964.	4	15,0	12,70	13,18	13,24	13,04
31. III 1964.	8	18.0	12,10	13,20	13,28	12,86
31. III 1964.	9	20,5	12,10	13,15	13,30	12,85
31. III 1964.	11	21,0	12,50	13,34	13,34	13,06
31. III 1964.	12	17.0	12,60	13,25	13,30	13,05
31. III 1964.	13	21,0	12,95	13,56	14,10	13,53
31. III 1964.	14	30,0	13,50	14,05	14,50	14,01
31. III 1964.	15	25,0	13,29	14,00	14,10	13,79
31. III 1964.	16	25,0	13,51	14,00	14,15	13,88
31. III 1964.	17	33,0	13,48	14,10	14,68	14,08
31. III 1964.	18	24,0	12,86	13,54	13,90	13,43
31. III 1964.	20	20,0	13,48	13,64	14,00	13,70
31. III 1964.	21	26,5	13,55	13,78	14,35	13,89
31. III 1964.	25	32,0	14,80	14,00	14,42	14,40
28. III 1964.	26	37,0	12,34	13,52	13,86	13,24
28. III 1964.	27	31,0	12,30	13,30	13,70	13,10
28. III 1964.	28	30,0	12,05	13,60	13,80	13,15
28. III 1964.	29	29,0	12,80	13,89	13,90	13,53
28. III 1964.	30	33,0	12,18	13,58	13,82	13,19
28. III 1964.	31	25,0	12,85	13,60	13,95	13,46
28. III 1964.	32	32,5	13,05	14,15	14,28	13,82
28. III 1964.	34	13,0	12,72	13,38	13,50	13,20
28. III 1964.	36	27,0	12,70	13,50	13,84	13,34

$\begin{aligned} & \text { Datum } \\ & \text { (Date) } \end{aligned}$		Dubina u metr. (Depth in m .)	Temperatura u "C (Temperature in ${ }^{\circ} \mathrm{C}$)			
			Morska površina (Surface)	Sredina (Middle layers)	Mor, dno (Bottom)	Srednja temp. vrijednost (Mean temp. value)
28. III 1964.	40	12,0	12,18	13,30	13,52	13,00
28. III 1964.	41	35,0	12,40	13,95	14,00	13,45
3. IV 1964.	42	40,0	12,88	13,82	14,06	13,58
3. IV 1964.	43	17,0	12,05	12,98	13,80	12,94
3. IV 1964.	44	17,0	13,65	13,78	13,95	13,79
3. IV 1964.	45	37,5	14,04	13,72	14,08	13,94
3. IV 1964	46	32,5	14,25	13,80	14,00	14,01
3. IV 1964.	47	21,0	14,36	13,66	14,26	14,09
3. IV 1964.	48	16,5	14,55	14,10	14,15	14,26
3. IV 1964.	49	33,0	14,18	13,92	13,90	14,00
3. IV 1964.	50	14,0	14,50	14,05	14,10	14,21
3. IV 1964.	51	20,5	14,50	14,15	14,10	14,25
3. IV 1964.	56	10.0	14,60	14,00	14,12	14,24
3. 1V 1964.	57	6,5	14,45	14,50	14,50	14,48
3. IV 1964.	58	18,0	13,86	13,48	14,18	13,84
3. IV 1964.	59	22,0	13,75	13,50	14,10	13,78
3. IV 1964.	60	26,0	13,80	13,66	14,30	13,92
3. IV 1964	61	40,0	13,68	14,30	14,10	14,02
3. IV 1964	62	26,0	14,00	13,90	13,95	13,95
3, IV 1964.	63	20,0	13,50	13,68	14,92	14,03
3, IV 1964.	65	38,0	13,98	14,40	14,50	14,29
3. IV 1964.	66	32,0	13,90	14,45	14,55	14,30
3. IV 1964.	67	19.0	13,50	14.05	14,10	13,88
3. IV 1964.	68	36,0	13,10	14,60	14,45	14,05
9. IV 1964.	69	14.0	13,34	14,40	14,62	14,12
9. IV 1964.	70	8,0	13,30	13,95	14,40	13,88
9. IV 1964.	71	7.5	13,38	14,30	14,48	14,08
9. IV 1964.	72	8.5	13,40	14,10	14,20	13.90
9. IV 1964.	73	16,0	13,68	14.40	14,60	14,22
9. IV 1964.	74	14,5	13,25	13,98	14,20	13,84
9. IV 1964.	75	38,0	13,18	14,62	14.52	14,10

Datum (Date)		Dubina u metr. (Depth in m .)	Temperatura $\mathrm{u}^{\circ} \mathrm{C}$ (Temperature in ${ }^{\circ} \mathrm{C}$)			
			Morska površina (Surface)	Sredina (Middle layers)	Mor. dno (Bottom)	Srednja temp. vrijednost (Mean temp. value)
9. IV 1964.	76	40,0	13,35	14,88	14,80	14,34
9. IV 1964.	77	28,0	13,20	14,70	14,75	14,21
9. IV 1964.	78	37,0	13,10	14,82	14,78	14,23
9. IV 1964.	79	25,0	13,38	14,15	14,35	13,96
9. IV 1964.	82	42,0	13,20	14,88	14,80	14,29
9. IV 1964.	83	60,0	14,80	14,84	14,78	14,80
9. IV 1964.	84	46,0	14,20	14,84	14,78	14,60
9. IV 1964.	86	35,0	14,90	14,82	14,78	14,83
Prosječna vrijednost:			13,34	13,93	14,14	13,80

Tabela br. 5
PREGLED PROSJECNLH TEMPERATURNIH KOLEBANJA U BOKOKOTORSKOM ZALIVU U PERIODU VII-VIII 1961. GODINE

SUMMARY OF AVERAGE TEMPERATURE VARIATIONS IN BOKA KOTORSKA BAY IN PERIOD JULX-AUGUST 1961

Datum (Date)	Dubina u met. (Depth in m.)	Tomperatura is ${ }^{\text {c }}$ (${ }^{\text {a }}$ (emperature in ${ }^{\text {C }}$)				
		Kotorski (Kator bay)	$\begin{aligned} & \text { Risanski } \\ & \text { (Risan } \\ & \text { bay) } \end{aligned}$	Tivatski CTivat bay)	Hercegnow. Herreg:Novi bay)	Srednja temp. vrijednost (mean tomp. value)
$\begin{aligned} & \text { 30. VI- } \\ & \text {-11. VII } \\ & \text { 1961. } \end{aligned}$	Površina 0,5 1,0 5,0 Dno rarne dubine	$\begin{aligned} & 25,00 \\ & 24,76 \\ & 24,65 \\ & 19,90 \end{aligned}$	$\begin{aligned} & 21,06 \\ & 21,06 \\ & 22,92 \\ & 20,42 \end{aligned}$	$\begin{aligned} & 24,09 \\ & 24,09 \\ & 23,50 \\ & 19,90 \end{aligned}$	$\begin{aligned} & 24,10 \\ & 24,00 \\ & 24,00 \\ & 20,00 \end{aligned}$	$\begin{aligned} & 23,56 \\ & 23,47 \\ & 23,76 \\ & 20,05 \end{aligned}$
		16,83	16,90	16,00	15,90	16.40
	$\begin{array}{\|c} \text { Povrsina } \\ 0,5 \\ 1,0 \\ 5,0 \\ \text { Dno razne } \\ \text { dubine } \end{array}$	$\begin{aligned} & 22,97 \\ & 23,04 \\ & 22,57 \\ & 19,84 \end{aligned}$	$\begin{aligned} & 21,32 \\ & 21,32 \\ & 21,25 \\ & 19,64 \end{aligned}$	$\begin{aligned} & 22,15 \\ & 22,13 \\ & 21,29 \\ & 18,91 \end{aligned}$	$\begin{aligned} & 24,00 \\ & 24,00 \\ & 23,51 \\ & 19,98 \end{aligned}$	$\begin{aligned} & 22,61 \\ & 22,62 \\ & 22,15 \\ & 19,59 \end{aligned}$
		16,30	16,88	16,12	15,71	16,25

Tabela br. 6
PREGLED PROSJECNE TEMPERATURNE VRIJEDNOSTI PO PERIODAMA MJERENJA U BOKOKOTORSKOM ZALIVU SUMMARY OF AVERAGE. TEMPERATURE VALUES IN BOKA KOTORSKA BAY IN TERMS OF MEASUREMENTS

Datum (Date)	$\begin{gathered} \text { Sloj } \\ \text { (Layer) } \end{gathered}$	Temperatura u ${ }^{\circ} \mathrm{C}$ (Temperature in ${ }^{\circ} \mathrm{C}$)			
		Kotorski (Kotor bay)	$\begin{gathered} \text { Risanski } \\ \text { (Risan } \\ \text { bay) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Tivatski } \\ \text { (Tivat } \\ \text { bay) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Hercegnov, } \\ \text { Hercce-Novi } \\ \text { bay) } \\ \hline \end{gathered}$
$\begin{aligned} & 1963 . \\ & \text { 28. IX-9. X } \end{aligned}$	Površina Sredina Dno (raz. dub.)	$\begin{aligned} & 1759 \\ & 2225 \\ & 20,92 \end{aligned}$	$\begin{aligned} & 17,77 \\ & 21,95 \\ & 20,69 \end{aligned}$	$\begin{aligned} & 19,27 \\ & 22,83 \\ & 22,08 \end{aligned}$	$\begin{aligned} & 21,24 \\ & 22,60 \\ & 22,03 \end{aligned}$
$\begin{aligned} & \text { 22. I-28. I } \\ & 1964 . \end{aligned}$	Površina Sredina Dno (raz. dub.)	$\begin{aligned} & 10,47 \\ & 15,05 \\ & 1302 \end{aligned}$	$\begin{aligned} & 11,06 \\ & 14,38 \\ & 13,80 \end{aligned}$	$\begin{aligned} & 13,32 \\ & 13,43 \\ & 13,49 \end{aligned}$	$\begin{aligned} & 13,54 \\ & 13,88 \\ & 14,32 \end{aligned}$
$\begin{aligned} & \text { 28. III-9. IV } \\ & 1964 . \end{aligned}$	Povrsina Sredina Dno (raz. dub.)	$\begin{aligned} & 12,80 \\ & 1352 \\ & 13,75 \end{aligned}$	$\begin{aligned} & 12,44 \\ & 13,44 \\ & 13,67 \end{aligned}$	13,89 13,94 14,23	$\begin{aligned} & 13,76 \\ & 14,69 \\ & 14,69 \end{aligned}$
$\begin{aligned} & \text { 6. V-14. VI } \\ & 1963 \text {. } \end{aligned}$	Površina Sredina Dno (raz. dub.)	$\begin{aligned} & 18,31 \\ & 1586 \\ & 15,46 \end{aligned}$	$\begin{aligned} & 20,85 \\ & 16,03 \\ & 15,96 \end{aligned}$	$\begin{aligned} & 21,91 \\ & 17,10 \\ & 16,49 \end{aligned}$	$\begin{aligned} & 23,05 \\ & 19,35 \\ & 17,45 \end{aligned}$

Tabela br. 7
PREGLED SALINITETA NA ISTRAZIVANIM POZICLJAMA U BOKOKOTORSKOM ZALIVU U PERIODU V-VI 1963. GODINE

SALINITY IN INVESTIGATED LOCALITIES IN BOKA KOTORSKA BAY IN PERIOD V-VI 1963.

Datum (Date)		Dubina u metr. (Depth in III.)	Salinitet u \% (Salinity in \%0			
			Morska povr3ira (Surface)	Sredina (Middle layers)	Mor, dno (Bottom)	Srednja vrijednost (Mean value)
6. V 1963.	2	10,0	-	-	35,62	-
6. V 1963.	4	15,0	-	-	36,64	-
6. V 1963.	8	20,0	-	-	36,70	-
6. V 1963.	9	24,0	-	-	37,40	-
16. V 1963.	11	20,0	-	-	37,45	-
16. V 1963.	12	19,0	-	-	37,51	-
16. V 1963.	13	26,0	-	-	37,63	-
16. V 1963.	14	27,0	-	-	37,72	-
16. V 1963.	15	31,0	-	-	38,00	-
16. V 1963.	16	29,0	-	-	37,84	-
16. V 1963.	17	32,0	-	-	38,08	-
16. V 1963.	18	29,0	-	-	38,21	-
28. V 1963.	20	18,0	-	-	37,61	-
28.V 1963.	21	23,0	-	-	37,80	-
28. V 1963.	25	31,0	-	-	37,99	-
28. V 1963.	26	34,0	-	-	38,06	-
28. V 1963.	27	34,0	-	-	38,13	-
28. V 1963.	28	31,0	-	-	38,16	-
28. V 1963,	29	31,0	-	-	38,13	-
28. V 1963.	30	33,0	-	-	38,24	-
28. V 1963.	31	25,0	-	-	38,19	-
28. V 1963.	32	29,0	-	-	37,95	-
28. V 1963.	34	13,0	-	-	37,07	-
28. V 1963.	36	26,0	-	-	37,97	-

$\begin{aligned} & \text { Datum } \\ & \text { (Date) } \end{aligned}$		Dubina umetr. (Depth in m .)	Salinitet u \%ou (Salinity in \%om			
			Morska povrsina (Surface)	Sredina (Miadle layers)	Mor, dno (Bottom)	Srednja vrijednost (Mean value)
28. V 1963.	40	11,0	-	-	36,42	-
29. V 1963.	41	38,0	-	-	38,19	-
29. V 1963.	42	37,5	-	-	38,30	-
29. V 1963.	43	17,0	-	-	37,05	-
29. V 1963.	44	17.0	-	-	37,75	-
29. V 1963.	45	37.5	-	-	38,33	-
29. V 1963.	46	35,0	-	-	38,21	-
29. V 1963.	47	21,5	-	-	38,01	-
29. V 1963.	48	17,0	-	-	37,82	-
29. V 1963.	49	34,5	-	-	38.42	-
29. V 1963.	50	15,0	-	-	37,59	-
29. V 1963.	51	20,0	-	-	37,89	-
29. V 1963.	56	10,0	-	-	37,38	-
29. V 1963.	57	6,0	-	-	37,30	-
29. V 1963.	58	16,0	-	-	37,68	-
6. VI 1963.	59	23,0	-	-	38,01	-
6. VI 1963.	60	27,0	-	-	38,09	-
6. VI 1963.	61	37.0	-	-	38,24	-
6. VI 1963.	62	27.0	-	-	37,81	-
6. VI 1963,	63	15,0	-	-	37,36	-
6. VI 1963 .	65	36,0	-	-	38,24	-
6. VI 1963.	66	35,0	-	-	38,24	-
6. VI 1963.	67	19,0	-	-	36,88	-
6. VI 1963.	69	35,0	-	-	38,30	-
6. VI 1963.	69	13,5	-	-	36,06	-
6. VI 1963.	70	7,0	-	-	35,10	-
6. VI 1963.	71	6,0	-	-	35,07	-
14. VI 1963.	72	6,0	-	-	35,11	-
14. VI 1963.	73	16,0	-	-	36,63	-
14. VI 1963.	75	35,0	-	-	38,35	-
14. VI 1963.	74	13,0	-	-	36,08	-

Datum (Date)		Dubina u metr. (Depth in m.)	Salinitet u \%0 (Salinity in \%00			
			Morska površina (Surface)	Sredina (Middle layers)	Mor. dno (Bottom)	Srednja vrijednost (Mean value)
14. VI 1963.	76	40,0	-	-	38,39	-
14. VI 1963.	77	28,0	-	-	37,85	-
14. VI 1963.	78	29,0	-	-	37,84	-
14. VI 1963.	79	25,0	-	-	37,60	-
14. VI 1963.	82	41.5	-	-	38,39	-
14. VI 1963.	83	51,0	-	-	38,59	-
14. VI 1963.	84	43,0	-	-	38,58	-
14. VI 1963.	86	38,5	-	-	37,75	-
Prosječna vrijednost:			-	-	37,60	-

Tabela br. 8
PREGLED SALINITETA NA ISTRA2IVANIM POZICLJAMA U BOKOKOTORSKOM ZALIVU U PERIODU IX-X 1963. GODINE

SALINITY IN INVESTIGATED LOCALITIES IN BOKA KOTORSKA BAY IN PERIOD DX-X 1963.

Datum (Date)		Dubina unictr. (Depth in ml)	Salinitet u \%oe (Salinity in \%hen			
			Morska površina (Surface)	Sredina (Middle layers)	Mor. dno (Bottom)	Srednja vrijednost (Mean value)
28. IX 1963.	2	10,0	10,17	33,18	36,87	26,74
28. IX 1963.	4	15,0	13,60	35,90	36,67	28,72
28. 1X 1963.	8	20,0	8,44	36,62	37,19	27,41
28. TX 1963.	9	21,0	8,51	36,40	37,05	27,32
28. IX 1963.	11	21,0	16,31	37,03	37.29	30,21
28. IX 1963.	12	17,0	17,02	36,78	37,16	30,32
28. IX 1963.	13	23,0	17,00	37,10	37,38	30,49
28. IX 1963.	14	29.5	16,35	36,19	37.45	29,99
28. IX 1963.	15	27,0	16,41	36,58	37,40	30,13
28. IX 1963.	16	25,5	16,10	36,22	36,93	29,75
28. IX 1963.	17	33,0	16,50	36,89	37.88	30,42
28. EX 1963.	18	24,0	16,61	36,87	36,98	30,15
28. IX 1963.	20	19,5	11,31	37,16	36.52	28,33
28. IX 1963.	21	26,5	12,05	37,05	37,00	28,70
28. IX 1963.	25	32,0	16,53	37,09	37,91	30.51
28. TX 1963.	26	35,0	16,60	37,30	38,04	30,64
28. IX 1963.	27	31.0	16,60	37,20	38,00	30,60
28. TX 1963.	28	30.0	11,42	36,93	37,99	28.78
28. IX 1963.	29	29.5	11,16	37,12	38,00	28.76
28. IX 1963.	30	34.0	10,64	36,89	38,01	28,51
28. LX 1963.	31	25,0	13,28	37,00	38,04	29.44
28. IX 1963.	32	33.0	13,30	36.91	38,21	29,47
28. IX 1963.	34	14,0	10,39	35,82	38,00	28,03
28. EX 1963.	36	27,0	9,80	34,15	36,90	26,95

$\begin{aligned} & \text { Datum } \\ & \text { (Date) } \end{aligned}$	$\begin{gathered} \frac{3}{3} \\ \frac{3}{4} \\ 20 \\ 20 y \end{gathered}$	Dubina 4 metr. (Depth in m.)	Salinitet uf \% (Salinity in			
			Morska povrsina (Surface)	Sredina (Middle layers)	Mor. dno (Bottom)	Srednja vrijednost (Mean value)
28. IX 1963.	40	12,0	11,96	35,37	36,85	28,06
9. X 1963.	41	35,0	16,13	36,90	38,29	30,44
9. X 1963.	42	38,5	18,05	36,95	38,35	31,11
9. X 1963.	43	16,5	16.28	36,10	37,12	29,83
9. X 1963.	44	17,0	17,90	37,18	37,80	30,96
9. $\times 1963$.	45	37,5	18,62	37,06	38,49	31,39
9. X 1963.	46	37.5	-	-	38.50	38,50
9. $\times 1963$.	47	22,0	-	-	37,38	37,38
9. X 1963.	48	17,0	-	-	37,89	37,89
9. X 1963.	49	31,0	-	-	38,24	38,24
9. X 1963.	50	14,5	-	-	37,51	37,51
9. X 1963.	51	20,0	-	-	38,09	38,09
9. X 1963.	56	10,0	-	-	37,88	37,88
9. X 1963.	57	6,0	-	-	37,15	37,15
9. X 1963.	58	17,0	-	-	38,00	38,00
9. X 1963.	59	22,5	-	-	38,18	38,18
9. X 1963.	60	26,0	-	-	38,21	38,21
9. $\times 1963$.	61	37,0	-	-	38,51	38,51
9. X 1963.	62	26,5	-	-	38,09	38,09
9. X 1963.	63	17,0	-	-	37,70	37,70
9. X 1963.	65	31,0	-	-	38,40	38,40
7. X 1963.	66	32.5	-	-	38,42	38,42
7. X 1963.	67	19,0	-	-	37,84	37,84
7. X 1963	68	36,0	-	-	38.58	38,58
7. X 1963.	69	18,0	-	-	38,10	38,10
7. X 1963.	70	8,0	-	-	36,11	36,11
7. X 1963.	71	7,0	-	-	36,09	36,09
7. X 1963.	72	9,0	-	-	36,04	36,04
7. X 1963.	73	16,0	-	-	37,38	37,38
7. X 1963.	74	13,0	-	-	37,12	37,12
7. X 1963.	75	38,5	-	-	38,53	38,53

Datum (Date)		Dubina u metr. (Depth in m.)	Salinitet u \%\%e (Salinity in \%\%			
			Morska površina (Surface)	Sredina (Middle layers)	Mor, dno (Bottom)	Srednja vrijednost (Mean value)
7. X 1963.	76	40,5	-	-	38.52	38,52
7. X 1963.	77	28,0	-	-	38,13	38,13
7. X 1963.	78	29,0	-	38,17	38,53	38,35
7. X 1963.	79	25,0	-	-	38,21	38,21
7. X 1963.	82	47,0	31,35	38,26	38,51	36,04
7. X 1963.	83	61,0	31,37	38,57	38,51	36,15
7. $\times 1963$.	84	45,0	32,92	38,53	38,55	36,66
7. $\times 1963$.	86	35,0	32,95	38,55	38,50	36,66
Prosječna vrijednost:			16,28	36,74	37,73	30,25

Tabela br, 9
PREGLED SALINITETA NA ISTRAZIVANIM POZICIJAMA U BOKOKOTORSKOM ZALIVU U I 1964. GODINE

SALINITY IN INVESTIGATED LOCALITIES IN BOKA KOTORSKA BAY IN I 1964.

$\begin{aligned} & \text { Datum } \\ & \text { (Date) } \end{aligned}$	$\begin{aligned} & \text { S } \\ & \frac{3}{3} \\ & \text { 芯 } \\ & 0 \end{aligned}$	Dubina u metr. (Depth in III.)	Salinitet un \%00 (Salinity in \%m			
			Morska povrsina (Surface)	Sredina (Middle tayers)	Mor. dno (Bottom)	Srednja vrijednost (Mean value)
28. I 1964.	2	10,0	34.11	35,70	34,04	34,61
28. I 1964.	4	16,0	36.76	36,45	36.78	36,66
28. I 1964.	8	19,0	35,41	35,12	32,92	34,48
28. I 1964.	9	20,0	35,41	35,02	33,46	34,63
28. I 1964.	11	21.0	36.02	38,04	-	37.08
28, T 1964.	12	17.0	36,13	37,82	36,74	36,89
28. I 1964.	13	20,5	36.11	37,64	37,80	37,18
28. I 1964.	14.	30,0	35,28	37,40	37.91	36,86
28. I 1964.	15	25,0	34,02	37.15	37,32	36,16
28. I 1964.	16	25,0	33,87	36,20	35,18	35,08
28. I 1964.	17	31,0	34,14	37,43	37,94	36,50
28. 11964.	18	24,0	35,10	37.02	37,24	36,45
28. I 1964.	20	21,5	26,20	37,01	37,71	33,64
28. I 1964.	21	26,5	34,45	37,16	37,84	36,48
28. I 1964.	25	31,0	34,97	37.45	37,84	36,75
28. I 1964.	26	35,0	35,99	37.65	38,01	37.21
28. I 1964.	27	31,0	35,87	37,70	38,10	37,22
27. I 1964.	28	30,0	35,02	36,41	37.92	36.45
27. I 1964.	29	30,0	35,00	36,38	38,02	36,46
27. 11964.	30	33,0	35,12	36,61	38,04	36,59
27. I 1964.	31	25,0	35.40	36,78	37,84	36,67
27. I 1964.	32	32,0	34,75	37,21	37,86	36,60
27. I 1964.	43	14,0	34,70	36,62	37,14	36,15
27. 1 1964.	36	27,0	34,43	37,30	37,81	36,51

$\begin{aligned} & \text { Datum } \\ & \text { (Date) } \end{aligned}$		Dubina u metr (Depth in m.)	Salinitet u \%on (Salinity in veo			
			Morska porrsina (Surface)	Sredina (Middle layers)	Mor, dno (Bottom)	Srednja vrijednost (Menn value)
27. 1 1964.	40	11,0	32,48	36,38	36,22	35,02
27. I 1964.	41	35.0	34,67	37,53	37,91	36,70
27. I 1964.	42	39,0	36,88	37,88	37,97	37,57
27. I 1964.	43	17,0	34,18	36,00	36,44	35,54
27. I 1964.	44	17,0	36,90	37,14	37.80	37.28
27. 11964.	45	37.0	37,65	37,94	37,84	37,81
27. 11964.	46	30,0	37,58	37,90	38,09	37,85
27. I 1964.	47	19.5	37,94	37,97	37,97	37,96
27. I 1964.	48	17.0	37,52	37,60	37,71	37.61
27. I 1964.	49	31,0	37,94	37.98	37,95	37.95
27. I 1964.	50	14,0	37,98	37,98	38,26	38,07
27. I 1964.	51	20,0	37.86	37.91	38,30	38.02
27. I 1964.	56	8,5	37,99	37,95	38,03	37,99
27. 11964.	57	6,0	37.81	37.81	37.80	37,80
27. 11964.	58	17.5	37.86	37,74	37,86	37,82
24. I 1964.	59	22,0	37,85	37,80	37,92	37.85
24. I 1964.	60	26,0	3788	37,94	38,02	37.94
24. I 1964.	61	37.5	3781	37,97	38,15	37,97
24. 1 1964.	62	26,0	37,48	37,69	37,99	37,72
24. I 1964.	63	16,5	3757	37,48	37,70	37,25
24. I 1964.	65	36,0	37.92	37,95	38,30	38,05
24. I 1964.	66	32,0	3774	37,98	38.22	37,98
24. 11964.	67	19,0	3770	37,81	37,89	37,80
24. 1 1964.	68	36,0	3780	37,91	37,96	37.89
24. I 1964.	69	14,0	3779	37,75	37,79	37,77
24. I 1964.	70	8,0	3782	37,86	37,89	37.85
24. I 1964.	71	7,0	37,79	37,81	37,94	37,84
24. I 1964.	72	9,0	37.78	37.86	37,82	37.82
24. 11964.	73	16,0	37,81	37,89	37,98	37.89
24. I 1964.	74	13,0	37,91	37,96	37,99	37.95
24. I 1964.	75	38,0	37,88	37,92	37,94	37,91

Datum (Date)		Dubina u metr. (Depth in m .)	Salinitet u \% $\%_{0}$ (Salinity in \%			
			Morska povrకina (Surface)	Sredina (Middle layers)	Mor. dno (Bottom)	Srednja vrijednost (Mean value)
24. I 1964.	76	40,0	37,87	37,94	38,09	37,96
24. I 1964.	77	28,0	37,86	37,92	37,94	37,90
24. I 1964.	78	36,0	37,90	37,99	28,17	38,02
24. I 1964.	79	25,0	37,90	37.92	38,12	37,98
22. I 1964.	82	47,0	37,83	38,04	38,60	38,15
22. 11964.	83	59,0	38,21	38,51	38,58	38,43
22. I 1964.	84	49,0	38,10	38,51	38,71	38,44
22. I 1964.	86	38,0	38,39	38,33	38,73	38,48
Prosječna vrijednost:			36,46	36,94	37,61	36,99

Tabela br. 10
PREGLEDSALINITETA NA LSTRA2TVANIM POZICIJAMA U BOKOKOTORSKOM ZALIVU U PERIODU II-IV 1964. GODINE SALINITY IN INVESTIGATED LOCALITIES IN BOKA KOTORSKA BAY IN PERIOD III-IV 1964.

Datum (Date)		Dubina a metr. (Depth in Im.)	Saliritet ut \%ee (Salinity in tha			
			Morska povrsina (Surface)	Sredina (Middle layers)	Mor. dno (Bottom)	Srednua vrijednost (Melia value)
31. III 1964.	2	10,0	8,62	33,40	33,95	25,32
31. III 1964.	4	15,0	9,58	33,48	35,86	26,30
31. III 1964.	8	18,0	9,64	33,61	35,66	26,30
31. III 1964.	9	20,5	11,00	34,02	36,40	27,14
31. III 1964.	11	21,0	13,42	35,61	36,55	28,52
31. III 1964.	12	17,0	13,64	35,50	36,61	28,58
31. III 1964.	13	21,0	13,70	35,60	36,58	28,62
31. III 1964.	14	30,0	11,28	36,70	37,01	28,33
31. III 1964	15	25,0	11,79	36,20	36,89	28,29
31. III 1964.	16	25,0	13,05	35,67	36,13	28,29
31. III 1964.	17	23,0	11,40	36,87	36,18	28,15
31. III 1964.	18	24,0	12,16	35,68	36,29	28,04
31. III 1964.	20	20,0	12,71	35,66	-	24,18
31. III 1964.	21	26,5	13,70	35,84	37,03	28,85
31. III 1964.	25	32,0	9.55	36,00	37,29	27,61
28. III 1964.	26	37,0	21,05	37.60	38,21	32,28
28. III 1964.	27	31,0	22,15	37,16	37.84	32,38
28. III 1964.	28	30,0	20,10	36,49	37,16	31,25
28. III 1964.	29	29,0	23,16	36,90	37,42	32,49
28. III 1964.	30	33,0	21,32	35,49	36,38	31,06
28. III 1964.	31	25,0	22,02	35,11	36,04	31,05
28. III 1964.	32	32,5	21,43	35,16	36,70	31,09
28. III 1964.	34	13,0	17,36	33,39	35,44	32,06
28. 1111964.	36	27,0	20,18	35,49	36,90	30,85

$\begin{aligned} & \text { Datum } \\ & \text { (Date) } \end{aligned}$		Dubina u metr. (Depth in m .)	Salinitet u \%00 (Salinity in \%os			
			Morska povrsina (Surface)	Sredina (Middle layers)	Mor. dno (Boltom)	Sredrija vrijednost (Mean value)
28. 1111964.	40	12,0	19,05	30,16	31,84	27,01
28. III 1964.	41	35,0	21.64	35,80	37,64	31,69
3. IV 1964.	42	40,0	23,16	39,97	37,94	32,35
3. IV 1964.	43	17,0	21,10	30,16	35,80	29,02
3. IV 1964.	44	17,0	24,00	35,13	36,24	31.79
3. IV 1964.	45	37.5	23,72	36,21	37,92	32,61
3. IV 1964.	46	32.5	23,84	36,43	37,84	32,70
3. IV 1964.	47	21,0	23,80	36,32	37,00	32,37
3. IV 1964.	48	16,5	23,92	35,18	35,89	31,66
3. 1V 1964.	49	33,0	23,96	36,42	36,63	32,33
3. IV 1964.	50	14,0	24,70	32,80	34,60	30,70
3. IV 1964.	51	20,5	24,68	33,42	35,28	31,12
3. IV 1964.	56	10,0	24,72	30,28	34,34	29,78
3. IV 1964.	57	6,5	24,80	24,79	28,92	22,83
3. IV 1964.	58	18,0	24,81	30,17	37,50	30,82
3. IV 1964.	59	22,0	22,62	31,12	36,40	30,01
3. IV 1964.	60	26,0	21,90	32,16	36,88	30,31
3. IV 1964.	61	40,0	21,80	37,32	38,33	32,48
3. IV 1964.	62	26,0	22,78	35,91	37,60	32,09
3. IV 1964.	63	20,0	22,70	36,13	37,10	31,97
3. IV 1964.	65	38,0	23,82	37,70	38,25	33,25
3. IV 1964	66	32.0	23,70	37.28	38,02	33,00
3. IV 1964.	67	19,0	23,71	36,10	37,08	32,29
3. IV 1964.	68	36,0	42.73	37,52	38,15	33,46
9. IV 1964.	69	14.0	27.16	36,18	37,81	33.71
9. IV 1964.	70	8,0	27,01	33.94	36,72	32,55
9. IV 1964.	71	7.5	26,53	34,00	36,70	32,41
9. IV 1964	72	8,5	27,00	33,86	35,74	32,20
9. IV 1964.	73	16,0	27,09	36,20	37,90	30,39
9. IV 1964.	74	14,5	26,51	35,18	37,11	23.93
9. TV 1964.	75	38,0	26,49	37,88	38,19	34.18

Datum (Date)		Dubina u metr. (Depth in m .)	Salinitet u \% (Salinity in \% $\%$			
			Morska površina (Surface)	Sredina (Middle layers)	Mor, dno (Bottom)	Srednja vrijednost (Mean value)
9. IV 1964.	76	40.0	26,52	37,87	38,21	37,53
9. IV 1964.	77	28,0	25,18	37,20	37,91	33,43
9. IV 1964.	78	37,0	25,52	37,60	38,15	33,75
9. IV 1964.	79	25,0	25,60	37,61	38,10	33,70
9. IV 1964.	82	42,0	25,57	37.97	38,15	33.89
9. IV 1964.	83	60,0	29,67	38,26	38,35	35,42
9. IV 1964.	84	46,0	33,82	38,14	38,33	36,76
9. IV 1964.	86	35,0	37,81	38,13	38,22	38,05
Prosječna vrijednost:			21,27	35,28	36,76	31,10

Tabela br. 11
PREGLED PROSJEC̆NOG MJESECNOG KOLEBANJA SALINITETA \| BOKOKOTORSKOM ZALIVU U JULU 1961. GODINE

AVERAGE VALUES OF SALINITY IN A MONTH CYCLE IN BOKA KOTORSKA BAY IN JULY 1961

Datum (Date)	Dubina u met. (Depth in m .)	Salinitet u \% (Salinity in \%/6)			
		Kotorski (Kotor bay)	Risanski (Risan bay)	Tivatski (Tivat bay)	Hercegnov, Herceg-Novi bay)
$\begin{aligned} & \text { 16. VII-31. VII } \\ & \text { 1961. } \end{aligned}$	0,5	31,31	30,60	37,52	37,88
	5,0	36,24	36,08	37,94	38,26
	15,0	37,79	37,70	38,26	38,27
	30,0	37,98	37,96	38,26	38,29

Tabela br. 12

DIAPAZON TEMIPERATURE I SALINITETA UNUTAR KOJIH SU NADENE ZIVE JEDINKE MAKRO-MOLLUSCA BOKOKOTORSKOG ZALIVA THE RANGE OF TEMPERATURE AND SALINITY WHERE LIVING MACTO MOHLHSKS WERE FOUND, IN BOKA KOTOUSKA BAY

	Temperstura if ${ }^{\circ} \mathrm{C}$ (Temperature in ${ }^{\circ} \mathrm{C}$)			Salinitet it 5 (Salinity in *a)		
	Dno (Bottom)		Teraper. gradiljent (Temp. gradfert)	Dno (Boltom)		Salin. sradijent SSatinity gradicat)
	Minimun (Minim.)	$\begin{aligned} & \text { Maksimum } \\ & \text { (Maxim.) } \end{aligned}$		$\begin{aligned} & \text { Minimum } \\ & \text { (Minim.) } \end{aligned}$	Maksimum (Maxim.)	
Hailotis Lamellova LAMK.	12,78	23,18	10,40	35,10	33,29	3,19
Diodura piberula LAMK.	12,75	22,70	9.95	35,26	38,50	322
Diculora graeca L.	12,78	22,66	9.86	35,10	36,71	3,61
Emangimia finsura L	14,10	22,60	150	37.25	38,73	0,98
Pat-lla coerulea L.	12.15	22,70	10.55	33,46	35,42	4.96
Patella lustamica GMEL	12.83	22,47	9,84	37,12	38.73	1,81
Patila vulgata L.	12,15	2, 18	11.05	33,46	35.29	4.83
Caliosturnar zizyphinum L	1295	22.67	9,72	36,06	38.71	2,63
Callosloura conulus L	12.75	22,70	9.95	35,16	35,73	3,63
Culiostoma laugieri PaYR	12,83	22.65	9,82	28,17	38.73	10,36
Monodonta turbinata BORN.	12,15	23,90	11,75	3346	38.73	521
Cartharidus strianus L	13,33	22.60	9.27	37,00	3873	1,13
Cibbuta marus L	12.06	22,00	10,55	35,10	38.29	3.19
Gibbula divaricata L	12,95	22,70	9.75	35.28	38,30	3,02
Giboula umbilicaris L	12.78	21,20	8.42	35,10	38.21	3,11
Gibioula obliquata LOC.	14.78	27,60	7,82	34, 59	38.71	0,16
Clanculas coratimus GMEL	13.27	22,66	939	36,88	38,71	1,83
Astraca (Bolma) rugosa L	12.76	22,10	932	45,10	38,50	3,40
Leptotyra sauguinca L		-	-	-	-	-
Littorina neritoides L.	12,76	22,64	9,86	35,10	25,24	3.14
Turritella trjorinata BR. f. commanis RISSO	12,72	23.90	11.18	28.17	38,73	10.56
Vernetus (Scrpulorbis) arenarius L	13,40	22,66	9.26	37.16	38.73	157
Vermetus (Petaloconchus) sulscancellatus BIV.	14,70	22,67	7.97	37.85	38,71	0,06
Cerithium vulyatum ERUG.	12.13	22.66	10.53	31.84	38.59	6,75

Nuriv vrite (Name of species)	Temperatura of ${ }^{\circ} \mathrm{C}$)(Temperature in ${ }^{\circ} \mathrm{C}$)			Salinitet ut(Salinity in		
	Diso (Bottorn)		Temper. gradijent (Tcmp. pradient)	Dno (Bottam)		Sslin. gradijent (Sallinity pradient)
	Mintmum (Minim,)	Malssimura (Maxim.)		Minimum (Minim.)	Maketnum (Maxim.)	
Cerithium rupentre RISSO	12,83	22,67	9.84	36,04	38,19	2.15
Cerithum sp.	12,60	18,58	5.95	35,18	36,93	1,75
Scala comminis LAMK.	14,78	22,65	7,87	25.17	35.53	10,36
Strombllurmis subulata DON.	-	-	-	-	-	,
Capoles hungaricus L.	14,78	22,66	78	37.75	38.73	0,98
Calyptraea chinensis L.	13,10	22,65	9.55	25,17	38.35	10,18
Crepidula moulinsif MiCH.	13,45	22,46	9.81	36.70	38.60	1,90
Aporrhais pes-frelocani L	12.13	22,65	10.52	28,17	38.53	10,36
Natica forephinha R15SO	12.66	23,10	10.44	*5,07	37,94	2.57
Natica millehunctata LAMK.	12,66	23,10	10,44	35,07	37,94	2,87
Natica hebraca MART	12,06	23,18	1052	35.07	38.60	3,5]
Natica op.	12.66	23,10	10.44	35,07	37,94	2,87
Polynices (Lunuth) alderi FORB.	13.34	22.20	8.86	36.18	38,08	1,90
Cyprama lurida L	1350	21.50	4,00	35,44	33.00	2.56
Cypraes pyrum GMEL	14.78	22.60	7,82	32,75	38.73	0,96
Cyprams sparica L	14,76	22,40	787	37.75	36.73	0.95
Primovila adriatica SOW.	14,76	22.05	7,27	38,35	38.59	024
Trivia adriatica MONTEN	14.78	22,66	7.88	38.15	38,71	0,56
Cassidaria ochinophora L.	-	-	-	-	-	-
Dollum galea L	-	-	-	-	-	-
Murex trunculus L	12,13	2285	10,72	32,92	35.50	5.58
Murex trandaris L	12,60	21. 5	10,25	25,17	39,73	10,56
Tritonalia erinaceat L-	12,85	22,12	9,27	35×80	33,49	2,68
Columbella rustical L	12.60	22,67	10.07	35,11	38,73	\$,62
Buccinulum corricum L	-	-	-	-	-	-
Pisuria maculosa LAMK.	1200	23,10	10.50	35,80	38,73	2,93
Nassarins (Hiria) pygmaeus LAMK.	13,18	22,70	4.52	28,17	38.53	10.36
Nussa costhlata RENIER	-	-	-	-	-	-
Nassartas (Hima) reticularus L	12,78	22,64	9,88	35,15	36.93	1.75

Nariv yrste (Nams of apocies)				Sailinitet us \$o (Salinity in Nin)		
	Dro (Bottom)		Temper. gradfent (Temp. gradient)	Dio (Bortion)		Salin. gradijent (Satinily grauient)
	$\begin{aligned} & \text { Minimum } \\ & (\text { Minim. }) \end{aligned}$	Maksimim (Maxim).		Minimutn (Minini:)	$\begin{aligned} & \text { Maksimum } \\ & \text { (Maxim.) } \end{aligned}$	
Nassarits (Sphacronassa) mutahilis L	12,66	25,10	10,44	35,97	37,94	2.87
Nassa neritea 1.	12.66	23,10	10,44	35.07	37.94	2.87
Pusinus (Aptyxis) rustnatus OLIVI	-	-	-	-	-	-
Fusinus (Aptyxis) syracusanus L.	-	-	-	-	-	-
Furus polchellus PHIL.	14.78	22,60	7,82	38,33	38.71	0.88
Fasciolaria sp.	-	-	-	-	-	-
Mitra ebenlia-ebenus LAMK.	-	-	-	-	-	-
Conus medfitrnaneus BRUG.	12,66	23.10	10,44	31.48	38,00	6.52
Pliflac aperta L.	-	-	-	-	-	-
Chiton allwaceuy SPENG,	12,78	22,67	989	35,10	$3{ }^{3}, 42$	3.32
Dentalium (Antalis) dentale L	12.66	23,90	11.24	31.84	38,73	6,89
Dentallan (Antalis) vulgare DA COSTA	12.72	22,64	9.92	36,08	3580	2.82
Nucular muclean I.	12,13	23,90	117	28.17	38,73	10,56
Leda tragills SHEM.	13,10	22,45	9,35	31,34	38.30	8,46
Leda pela L	13,34	22.65	9.31	28,17	38.60	10.48
Arca barfatal L	12,75	22,64	989	35,10	33.29	3,19
Arca nose L	12.78	23,18	10,40	35.10	38.19	3.09
Arca tetragona POLI	-	-	-	-	-	-
Arca (Striarca) lactea L	-	-	-	-	-	-
Aras dilirvil LaMK.	-	-	-	-	-	-
Glycymeris pilowa L	14,80	22.46	7.66	37.75	38,73	0.98
Glycymeris violacescens LAMK.	-	-	-	-	-	-
Glycymerix glycymeris L.	-	-	-	-	-	-
Mytilas calloprovincialls L.	12,15	23,90	11.35	33,46	38,19	4.73
Brachyodontes (Mytllaster) mimimus POLL	12,13	23,50	11.7	32.92	38.29	5,37
Modiolus barbotus L	13,60	22,65	9.05	36,20	38.53	2,33
Lithophaga lithophaga L.	12.78	23,18	10,40	35.10	38,42	3.32
Pima nebilis 1	13,25	22.85	9.60	3652	38,73	2.21

Naziy vrate (Name of species)	$\begin{aligned} & \text { Temperatura u }{ }^{\text {'C }} \\ & \text { (Temperature in } \end{aligned}$			Salinitet u(Salinity in		
	Dro (Bottom)		Temper. tradijent (Temp gradient	Dno (Bottom)		Salin. madijent (Salinity pradient)
	Minimum (Minim.)	Makaimuin (Maxim.)		Minimum (Minim.)	Maksimum (Maxim)	
Pinna pectinata L.	13,20	22,85	9.65	35,89	38,50	2,51
Pteria hirundo L.	13.21	22,80	8.59	35.86	37,70	1,84
Avicula tarentina LAMK.	-	-	-	-	-	-
Pecten jacobaens L	-	-	-	-	-	-
Chlamys (uequipecten) opercularis L	-	-	-	-	-	-
Chlamys varia L.	12,13	22,80	10.67	32.98	38,51	5,53
Chlamy glabra L.	13,33	22,66	9,33	37.60	38,73	1,13
Spondylus maederopus L	12,60	22,60	10,00	35,18	38,01	2.83
Lima lima L.	12,95	22.67	9,72	36,08	38,49	2.41
Limm hians GMEL.	14.63	22,60	7.97	37,75	38,73	0,98
Anomla cphipplum L.	13,10	23.90	10, 0^{0}	33,95	38,35	4.40
Ostrea cdulis L	10.85	22,60	11,75	28.92	38,21	9,29
1socardia cor L.	-	-	-	-	-	-
Divaricella divaricata L.	-	-	-	-	-	-
Loripes lacteus L	-	-	-	-	-	-
Cnama gryphina LAMK.	12,85	21,85	9.90	35.80	38.35	2,55
Chama lumellosa LAMK.	14,00	20.60	6,60	37,64	38,29	0.68
Cardlum edule L	12,60	21,10	8.50	31,84	38,50	6,66
Cardium tuberculatum L.	12,86	23.10	10,44	35,44	38,73	3,29
Cardium paucicostatum \$OWERBY	12.13	23,90	11.77	28.17	38,00	10.43
Cardium echinatum L-	13,43	22.66	9.23	36,18	38.58	2,40
Cardium exigum GMELIN	12,72	22,48	9.76	36,30	38,40	230
Laevicardium oblongum GMELIN	-	-	-	-	-	-
Pitar rudis POLI	-	-	-	-	-	-

Naziv vrste (Name of speciea)	Temperatura on ${ }^{\circ} \mathrm{C}$,(Temperaturs in ${ }^{\circ} \mathrm{C}$)			Salinitet us(Sulinity inOn		
	Dno (Bottom)		Temper gradilm! (Temp)pradien!	Doos (Bottom)		Salin. gradijent (Sallinity gradient)
	Minimum (Minim.)	Maksimunt (Maxim.)		(Minimam	Maksimum (Maxim.)	
Dosinia lupira L	-	-	-	-	-	-
Vemus verricoas L	12.00	22,64	10,04	15,18	38,73	355
Venus (Chione) pallina L	12.90	23,18	10,2if	13.74	38,73	2,99
Venus lasctata DONOV.	13.55	18.58	5.93	15, 51	36,93	1,75
Venerupis decussata L	12,60	22,66	10,06	15.18	38,73	335
Venerupis aureus GMELIN	-	-	-	-	-	-
Irus trus L	-	-	-	-	-	-
Mactra corallina L	12.00	22.64	10,04	15,44	38.50	3.06
Donacilla (Mesodema) cornea POLI	-	-	-	-	-	-
Psammobla depressa PENNANT	12.60	21,35	88.75	36.25	3780	157
Solenocurtus pelucidus L	-	-	-	-	-	-
Scrobicularia plama DA COSTA	12,00	21,85	9.25	35,44	38,50	3.05
Tellina distorta POLI	12.66	23,10	10.44	35,07	38,73	3.66
Tellina pulchella LAMK.	14,78	22.80	782	37.75	35,73	0.98
Tellina sp.	-	-	-	-	-	-
Solen varina L	12,15	23,18	11.03	33,46	38.05	4,57
Pharus legumen L	-	-	-	-	-	-
Hiatella tugosa L	12.95	22,00	9,6s	36,04	38.21	2,17
Hiatella arctica L.	-	-	-	-	-	-
Aloidis gibba OLIVI	12.38	23,90	11.51	23,17	38,73	1056
Thracia combulordea DE BIL.	13,80	19.95	6.15	37,01	37.91	0.90
Thracla sp.	13,80	19.95	6.15	37.01	37.11	Q,90
Teredo nuyalis L.	12,13	23,90	11,77	31,84	38,40	6,56
Cuspidaria (Neaera) cuspidatil OLIVI	-	-	-	-	-	-

